Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ba Vì Hà Nội

Nội dung Đề thi chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ba Vì Hà Nội Bản PDF - Nội dung bài viết Đề thi chất lượng lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Ba Vì Hà Nội Đề thi chất lượng lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Ba Vì Hà Nội Chúng tôi xin được giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi rà soát chất lượng môn Toán lớp 9 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội. Kỳ thi đã diễn ra vào ngày 18 tháng 05 năm 2022. Dưới đây là một số câu hỏi trong đề thi chất lượng Toán lớp 9 năm 2021-2022 của phòng GD&ĐT Ba Vì - Hà Nội: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một công nhân phải hoàn thành 60 sản phẩm trong một thời gian quy định. Nhưng do cải tiến kĩ thuật, mỗi giờ người công nhân đó đã làm thêm được 2 sản phẩm. Vì vậy công nhân đó đã hoàn thành kế hoạch sớm hơn giờ và còn làm thêm được 3 sản phẩm nữa. Hỏi theo kế hoạch, mỗi giờ người đó phải làm bao nhiêu sản phẩm? 2. Để phục vụ sản xuất hàng loạt tượng đồng Thánh Gióng, người ta đã tiến hành đo thể tích của tượng bằng cách thả chìm tượng vào một thùng nước hình trụ có bán kính đáy là 6 cm. Tính thể tích của tượng đồng biết khi thả chìm tượng vào thùng nước, lượng nước trong thùng dâng cao lên 5cm (kết quả làm tròn đến chữ số thập phân thứ nhất và lấy pi = 3,14). 3. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm) và đường kính BC. Trên đoạn CO lấy điểm I (I khác C và I khác O). Đường thẳng AI cắt (O) tại hai điểm D và E (D nằm giữa A và E). Gọi H là trung điểm của đoạn DE. 1. Chứng minh bốn điểm A, B, O, H cùng nằm trên một đường tròn. 2. Chứng minh AE BE. 3. Đường thẳng d đi qua điểm E song song với AO, d cắt BC tại điểm K. Chứng minh HK đồng quy với DC.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đầu năm lớp 9 môn Toán năm 2019 2020 trường Thanh Xuân Hà Nội
Nội dung Đề khảo sát đầu năm lớp 9 môn Toán năm 2019 2020 trường Thanh Xuân Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát đầu năm lớp 9 môn Toán năm 2019-2020 trường Thanh Xuân Hà Nội Đề khảo sát đầu năm lớp 9 môn Toán năm 2019-2020 trường Thanh Xuân Hà Nội Để đánh giá chất lượng và theo dõi tiến độ học tập của học sinh đầu năm học 2019-2020, trường THCS Thanh Xuân, Hà Nội đã tổ chức kỳ kiểm tra khảo sát đầu năm môn Toán lớp 9. Đề khảo sát này bao gồm các bài toán thuộc chương trình Toán lớp 8, với tổng cộng 5 bài toán dạng tự luận. Trong đề khảo sát đầu năm Toán lớp 9 năm 2019-2020 trường Thanh Xuân, một trong các câu hỏi là về hình thang ABCD có góc A và góc D bằng 90 độ, cạnh AB nhỏ hơn cạnh DC. Hai đường chéo AC và BD vuông góc với nhau tại điểm O. Học sinh được yêu cầu tính tỉ số lượng giác của các góc nhọn và cạnh BD của tam giác ADB, tính độ dài các đoạn thẳng AO, DO và AC, và tính diện tích tam giác DOH. Bài toán cũng yêu cầu chứng minh một phương trình liên quan đến đoạn thẳng BH. Câu hỏi khác trong đề khảo sát là về giá trị nhỏ nhất của biểu thức S với x nằm trong khoảng 2016 đến 2017. Học sinh phải tính toán và suy luận để tìm ra giá trị nhỏ nhất của biểu thức này. Đề khảo sát đầu năm môn Toán lớp 9 năm 2019-2020 trường Thanh Xuân Hà Nội không chỉ giúp học sinh ôn tập kiến thức mà còn phát triển kỹ năng suy luận và giải quyết vấn đề.
Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội
Nội dung Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Trong kỳ kiểm tra tập trung môn Toán hàng tháng tại trường THCS Bế Văn Đàn, nhằm đánh giá chất lượng học tập của học sinh lớp 9, đề kiểm tra tháng 9 năm học 2019 – 2020 đã được tổ chức. Đề bao gồm 05 bài toán dạng tự luận, thời gian làm bài là 90 phút. Trong đề kiểm tra của trường THCS Bế Văn Đàn – Hà Nội, có một bài toán liên quan đến Vịnh Hạ Long - một trong những kì quan thiên nhiên nổi tiếng thế giới. Bài toán giải quyết vấn đề vận tốc của hai xe ô tô đi hướng ngược chiều đến khi gặp nhau, với thông tin về vận tốc của mỗi xe và khoảng cách giữa Hà Nội và Vịnh Hạ Long. Bài toán khác trong đề kiểm tra liên quan đến bể bơi tiêu chuẩn, yêu cầu học sinh tính thể tích nước trong bể dựa trên chiều dài, chiều rộng, và chiều cao của bể. Đề còn đưa ra một bài toán về chứng minh bất đẳng thức cho các số thực dương a, b, c. Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 – 2020 tại trường THCS Bế Văn Đàn đặt ra các bài toán thú vị và mang tính ứng dụng cao, giúp học sinh rèn luyện kỹ năng giải quyet bài toán và logic, phát triển tư duy toán học.
Đề khảo sát lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Hoàn Kiếm Hà Nội
Nội dung Đề khảo sát lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát môn Toán lớp 9 năm 2018 - 2019 Đề khảo sát môn Toán lớp 9 năm 2018 - 2019 Ngày 09/05/2019, Phòng Giáo dục và Đào tạo quận Hoàn Kiếm, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 - 2019. Kỳ thi này nhằm mục đích đánh giá năng lực học tập của học sinh trước khi họ bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 - 2020. Đề khảo sát Toán lớp 9 năm 2018 - 2019 của phòng GD&ĐT Hoàn Kiếm - Hà Nội đã được biên soạn theo cấu trúc đề thi tuyển sinh vào lớp 10 THPT của sở GD&ĐT Hà Nội. Đề thi gồm 1 trang với 5 bài toán tự luận, và học sinh được cấp 120 phút để hoàn thành bài thi. Một số bài toán trong đề khảo sát: Giải bài toán về ô tô và xe máy đi từ A đến B, biết vận tốc của ô tô lớn hơn vận tốc của xe máy. Học sinh cần tìm vận tốc của mỗi xe. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi giá trị của m. Tìm giá trị của m để thỏa mãn một điều kiện cho trước. Phân tích các đặc điểm của tứ giác ABCD nội tiếp trong tam giác ABC, với ba đường cao đi qua trung tâm H. Bài toán đặt ra các mệnh đề phải chứng minh. Đề khảo sát Toán lớp 9 năm 2018 - 2019 của phòng GD&ĐT Hoàn Kiếm - Hà Nội là cơ hội để học sinh thử sức và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Hy vọng rằng các em sẽ cố gắng hết mình và đạt kết quả tốt trong kỳ thi này!
Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội
Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Ngày 07 tháng 05 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 - 2019. Kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để củng cố và nâng cao kiến thức Toán THCS, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội được biên soạn dưới dạng tự luận, bao gồm 1 trang với 6 bài toán. Học sinh được cấp 90 phút (không tính thời gian giám thị coi thi phát đề) để hoàn thành bài thi khảo sát chất lượng môn Toán lớp 9. Trích dẫn đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội: Một phòng họp có 300 ghế ngồi, được xếp thành một số hàng có số ghế bằng nhau. Buổi họp có 378 người tham dự, ban tổ chức đã kê thêm 3 hàng ghế và mỗi hàng phải xếp thêm 1 ghế, mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế, biết số hàng ghế ban đầu không vượt quá 20. Cho phương trình: x^2 - (x - 3)x - m + 2 = 0 (x là ẩn số). (a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m. (b) Tìm m để phương trình có ít nhất một nghiệm dương. Cho đường tròn (O;R) và dây BC cố định (BC < 2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B, C) sao cho tam giác ABC có ba góc nhọn. Các đường cao AD và CE của tam giác ABC cắt nhau tại H. (1) Chứng minh tứ giác AEDC là tứ giác nội tiếp. (2) Chứng minh HF đi qua trung điểm G của đoạn thẳng AC. (3) Chứng minh AF/sinDEC không đổi. (4) Cho BC = 1,5R; gọi I là hình chiếu của G trên AB. Hãy tính bán kính đường tròn ngoại tiếp tam giác IBC theo R.