Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Gia Viễn - Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Gia Viễn, tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho đa thức 2 Q x ax bx c 4. Chứng minh rằng nếu đa thức Q x nhận 2 và -2 là nghiệm thì a và c là hai số đối nhau. + Cho ∆ABC vuông tại A (AB < AC), D là trung điểm của BC, trên tia đối của tia DA lấy điểm E sao cho DE DA. Gọi H và K thứ tự là chân đường vuông góc hạ từ B và C xuống đường thẳng AE, M là chân đường vuông góc hạ từ D xuống AC. a) Chứng minh BK CH. b) Chứng minh CD KM. c) Từ E kẻ đường thẳng vuông góc với BC tại P và cắt BH tại N. Chứng minh ba điểm D, M, N thẳng hàng. d) Giả sử 0 ACB 36 tia phân giác của ACB cắt AD tại F. Chứng minh tam giác CEF là tam giác cân. + Một cái hộp đựng 60 quả bóng giống nhau, gồm ba màu: màu đỏ, màu xanh và màu vàng. Trong đó có 18 quả bóng màu đỏ và 25 quả bóng màu vàng. Hỏi cần phải lấy ra ngẫu nhiên ít nhất bao nhiêu quả bóng để chắc chắn rằng lấy ra được 2 quả bóng xanh?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chọn HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Xuân Trường Nam Định
Nội dung Đề khảo sát chọn HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Xuân Trường Nam Định Bản PDF - Nội dung bài viết Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định bao gồm một trang đề thi với năm bài toán tự luận. Thời gian làm bài là 120 phút. Đề thi được tổ chức nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 7 từ các trường THCS trên địa bàn huyện Xuân Trường, tỉnh Nam Định. Mục đích là để tuyên dương và khen thưởng cho những em học sinh xuất sắc, đồng thời thành lập đội tuyển học sinh giỏi Toán lớp 7 để tham gia kỳ thi học sinh Toán cấp tỉnh. Đề thi cũng đi kèm với lời giải chi tiết để giúp các em học sinh hiểu rõ hơn về cách giải các bài toán.
Đề giao lưu học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT thành phố Thái Nguyên
Nội dung Đề giao lưu học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT thành phố Thái Nguyên Bản PDF - Nội dung bài viết Đề giao lưu học sinh giỏi Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên Đề giao lưu học sinh giỏi Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên Đề giao lưu học sinh giỏi Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên là một bài thi gồm 03 trang với 07 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đủ để học sinh thể hiện kiến thức và kỹ năng của mình trong môn Toán. Bài thi không chỉ đánh giá khả năng giải quyết bài toán mà còn thúc đẩy sự sáng tạo, tư duy logic và khả năng suy luận của học sinh.
Đề giao lưu HSG lớp 7 môn Toán năm 2017 2018 phòng GD ĐT Tam Dương Vĩnh Phúc
Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2017 2018 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 7 môn Toán năm 2017-2018 Đề giao lưu HSG lớp 7 môn Toán năm 2017-2018 Sytu xin chào đến quý thầy cô và các em học sinh lớp 7. Dưới đây là đề giao lưu HSG môn Toán lớp 7 năm 2017-2018 của phòng GD&ĐT Tam Dương - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải và thang điểm. Trích dẫn một số câu hỏi trong đề: Cho góc xOy bằng 60 độ. Tia Oz là phân giác của góc xOy. Từ điểm B trên tia Ox, kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và AMC = 135 độ. Tính MC. Từ 200 số tự nhiên 1, 2, 3,..., 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k. Hy vọng đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng giải toán một cách hiệu quả.
Đề khảo sát HSG lớp 7 môn Toán năm 2017 2018 phòng GD ĐT thành phố Kon Tum
Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2017 2018 phòng GD ĐT thành phố Kon Tum Bản PDF - Nội dung bài viết Đề khảo sát HSG Toán lớp 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum Đề khảo sát HSG Toán lớp 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum Đề khảo sát HSG Toán lớp 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum bao gồm các câu hỏi sau: Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. Chứng minh rằng: a) BE = CD. b) Tam giác BDE là tam giác cân. c) Góc EIC bằng 60 độ và IA là tia phân giác của góc DIE. Tìm số hữu tỉ x, sao cho tổng của số đó với nghịch đảo của nó có giá trị là một số nguyên. Cho các số a, b, c không âm thỏa mãn: a + 3c = 2016; a + 2b = 2017. Tìm giá trị lớn nhất của biểu thức P = a + b + c. Đề thi diễn ra vào ngày 03 tháng 04 năm 2017 và được cung cấp đầy đủ đáp án và lời giải chi tiết, cùng hướng dẫn chấm điểm. Đề khảo sát này giúp học sinh rèn luyện và nâng cao kiến thức Toán của mình.