Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 2 ôn thi THPT QG 2020 trường Triệu Sơn 2 - Thanh Hóa

Ngày … tháng 03 năm 2020, trường THPT Triệu Sơn 2, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ hai theo định hướng thi THPT Quốc gia năm học 2019 – 2020. Đề KSCL Toán 12 lần 2 ôn thi THPTQG 2020 trường Triệu Sơn 2 – Thanh Hóa có mã đề 111, đề gồm có 50 câu trắc nghiệm, 07 trang, học sinh làm bài trong 90 phút. Trích dẫn đề KSCL Toán 12 lần 2 ôn thi THPTQG 2020 trường Triệu Sơn 2 – Thanh Hóa : + Một người vay ngân hàng 200 triệu đồng với lãi suất là 0,8%/ tháng. Người đó muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, người đó bắt đầu hoàn nợ, hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ mỗi tháng là như nhau và người ấy trả hết nợ sau đúng 5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số tiền mỗi tháng người đó cần trả cho ngân hàng gần nhất với số tiền nào dưới đây? + Một họa tiết hình cánh bướm như hình vẽ bên dưới. Phần tô đậm được đính đá với giá thành 2.500.000 đồng / m2. Phần còn lại được tô màu với giá thành 2.250.000 đồng / m2. Cho AB = 4dm, BC = 8dm. Hỏi để trang trí 1000 họa tiết như vậy cần số tiền gần nhất với số nào sau đây? [ads] + Bể nước của đài phun nước trường THPT Triệu Sơn 2, tỉnh Thanh Hóa là một hình trụ (T) có đáy là hình tròn đường kính 6m (kể cả thành bể, biết rằng thành bể dày 30 cm) và chiều cao 1.5 m. Gọi V và V1 lần lượt là thể tích khối trụ (T) và thể tích nước có thể chứa được trong bể (bỏ qua thể tích các vòi phun). Tính tỉ số V1/V. + Câu lạc bộ Tiếng Anh của trường THPT Triệu Sơn 2 (tỉnh Thanh Hóa) có 68 thành viên, trong đó có 23 nam và 45 nữ. Trong buổi sinh hoạt hàng tháng cần chọn ra 2 thành viên gồm 1 nam và một nữ để dẫn chương trình, trong đó 1 bạn dẫn bằng Tiếng Anh và 1 bạn dẫn bằng Tiếng Việt. Hỏi có tất cả bao nhiêu sự lựa chọn? + Trong không gian tọa độ Oxyz, gọi (P) là mặt phẳng cắt các tia Ox, Oy, Oz lần lượt tại A(a;0;0), B(0;b;0), C(0;0;c) sao cho a2 + b2 + c2 = 12 và diện tích tam giác ABC lớn nhất. Mặt phẳng (P) đi qua điểm nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?