Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giới hạn, hàm số liên tục Toán 11 GDPT 2018

Tài liệu gồm 171 trang, bao gồm kiến thức trọng tâm, các dạng toán thường gặp và bài tập chuyên đề giới hạn, hàm số liên tục môn Toán 11 chương trình GDPT 2018. Bài 1 . Giới hạn của dãy số 332. A Giới hạn hữu hạn của dãy số 332. 1. Định nghĩa 332. 2. Một số giới hạn cơ bản 332. B Định lí về giới hạn hữu hạn 332. C Tổng của cấp số nhân lùi vô hạn 333. D Giới hạn vô cực 333. E Các dạng toán thường gặp 333. + Dạng 1. Tính giới hạn dãy số bằng cách dùng định nghĩa, định lí về giới hạn dãy số 333. 1. Ví dụ mẫu 333. 2. Bài tập tự luyện 335. 3. Bài tập trắc nghiệm 336. + Dạng 2. Tính giới hạn L = lim P(n)/Q(n) 338. 1. Ví dụ mẫu 338. 2. Bài tập tự luyện 340. 3. Câu hỏi trắc nghiệm 352. + Dạng 3. Phương pháp lượng liên hợp (lim hữu hạn) 355. 1. Ví dụ mẫu 355. 2. Bài tập rèn luyện 356. 3. Bài tập trắc nghiệm 357. + Dạng 4. Giới hạn vô cực 361. 1. Ví dụ mẫu 361. 2. Bài tập tự luyện 362. 3. Bài tập trắc nghiệm 363. + Dạng 5. Tính tổng của dãy cấp số nhân lùi vô hạn 365. 1. Ví dụ mẫu 365. 2. Bài tập tự luyện 367. 3. Câu hỏi trắc nghiệm 368. + Dạng 6. Toán thực tế, liên môn liên quan đến giới hạn dãy số 371. 1. Ví dụ mẫu 371. 2. Bài tập tự luyện 372. 3. Bài tập trắc nghiệm 379. Bài 2 . Giới hạn của hàm số 385. A Giới hạn hữu hạn của hàm số tại một điểm 385. 1. Định nghĩa 385. 2. Phép toán trên giới hạn hữu hạn của hàm số 385. 3. Giới hạn một phía 385. B Giới hạn hữu hạn của hàm số tại vô cực 386. C Giới hạn vô cực (một phía) của hàm số tại một điểm 386. D Giới hạn vô cực của hàm số tại vô cực 387. E Các dạng toán thường gặp 387. + Dạng 1. Tính giới hạn bằng định nghĩa 387. 1. Ví dụ mẫu 387. 2. Bài tập tự luận 388. + Dạng 2. Các phép toán về giới hạn hàm số 389. 1. Ví dụ mẫu 390. 2. Bài tập tự luận 392. 3. Câu hỏi trắc nghiệm 403. + Dạng 3. Phương pháp đặt thừa số chung – kết quả vô cực 413. 1. Ví dụ mẫu 413. 2. Bài tập rèn luyện 414. 3. Câu hỏi trắc nghiệm 415. + Dạng 4. Giới hạn một phía 417. 1. Ví dụ mẫu 418. 2. Bài tập tự luận 419. 3. Câu hỏi trắc nghiệm 421. + Dạng 5. Bài toán thực tế về giới hạn hàm số 424. 1. Ví dụ mẫu 424. 2. Bài tập tự luận 424. Bài 3 . Hàm số liên tục 433. A Khái niệm 433. 1. Hàm số liên tục tại một điểm 433. 2. Hàm số liên tục trên một khoảng hoặc một đoạn 433. B Một số định lí cơ bản 433. 1. Tính liên tục của một số hàm số sơ cấp cơ bản 433. 2. Tính liên tục của tổng, hiệu, tích, thương của hai hàm số liên tục 433. C Các dạng toán thường gặp 434. + Dạng 1. Câu hỏi lý thuyết 434. 1. Ví dụ mẫu 434. 2. Bài tập trắc nghiệm 434. + Dạng 2. Dựa vào đồ thị xét tính liên tục của hàm số tại một điểm, một khoảng 437. 1. Ví dụ mẫu 437. 2. Bài tập tự luận 439. 3. Bài tập trắc nghiệm 440. + Dạng 3. Xét tính liên tục của hàm số tại một điểm 444. 1. Ví dụ mẫu 444. 2. Bài tập tự luyện 445. 3. Bài tập trắc nghiệm 447. + Dạng 4. Hàm số liên tục trên khoảng, đoạn 452. 1. Ví dụ mẫu 452. 2. Bài tập tự luyện 454. 3. Bài tập trắc nghiệm 465. + Dạng 5. Bài toán có chứa tham số 467. 1. Ví dụ mẫu 467. 2. Bài tập rèn luyện 468. 3. Bài tập trắc nghiệm 470. + Dạng 6. Toán thực tế, liên môn về hàm số liên tục 472. 1. Ví dụ 472. + Dạng 7. Bài toán phương trình có nghiệm 473. 1. Ví dụ mẫu 473. 2. Bài tập rèn luyện 474. 3. Bài tập trắc nghiệm 475. Bài 4 . Bài tập cuối chương III 478. A Bài tập tự luận 478. B Bài tập trắc nghiệm 482. C Đề ôn tập 494. 1. Phần Trắc nghiệm (7 điểm) 494. 2. Phần Tự luận (3 điểm) 500.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục
Tài liệu gồm 76 trang, được biên soạn bởi quý thầy cô giáo Nhóm Chuyên Đề Tự Luận Toán THPT, hướng dẫn giải các dạng bài tập chuyên đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục trong chương trình Toán 11 phần Đại số và Giải tích chương 4. GIỚI HẠN CỦA DÃY SỐ Dạng 1.1. Câu hỏi lý thuyết. Dạng 1.2. Giới hạn dãy số đa thức, căn thức không liên hợp. Dạng 1.3. Giới hạn dãy phân thức hữu tỷ. Dạng 1.4. Giới hạn dãy phân thức (có mũ n). GIỚI HẠN HÀM SỐ TẠI MỘT ĐIỂM Dạng 2.1. Khử vô định – dùng liên hợp. Dạng 2.2. Giới hạn tại điểm có kết quả là vô cực. Dạng 2.3. Giới hạn của hàm số lượng giác. GIỚI HẠN MỘT BÊN Dạng 3.1. Câu hỏi lí thuyết. Dạng 3.2. Khử dạng vô định – Giới hạn một bên. Dạng 3.3. Giới hạn tại điểm có kết quả là vô cực. GIỚI HẠN HÀM SỐ TẠI VÔ CỰC Dạng 4.1. Câu hỏi lí thuyết. Dạng 4.2. Giới hạn tại vô cực của hàm đa thức. Dạng 4.3. Giới hạn tại vô cực của hàm phân thức. HÀM SỐ LIÊN TỤC Dạng 5.1. Các câu hỏi lý thuyết. Dạng 5.2. Xét tính liên tục bằng đồ thị. Dạng 5.3. Hàm số liên tục tại một điểm. Dạng 5.4. Hàm số liên tục trên khoảng – đoạn. Dạng 5.5. Tìm m để hàm số liên tục tại 1 điểm. Dạng 5.6. Tìm m để hàm số liên tục trên khoảng – đoạn. Dạng 5.7. Bài toán về số nghiệm của phương trình.
Phân loại và phương pháp giải bài tập giới hạn
Tài liệu gồm 101 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập giới hạn, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4 (Toán 11). BÀI 1 . GIỚI HẠN DÃY SỐ. Dạng 1. Sử dụng nguyên lý kẹp. Dạng 2. Giới hạn hữu tỉ. Dạng 3. Dãy số chứa căn thức. Dạng 4. Dãy số chứa hàm lũy thừa. Dạng 5. Tổng của cấp số nhân lùi vô hạn. Dạng 6. Giới hạn dãy số có quy luật công thức, dãy cho bởi hệ thức truy hồi. BÀI 2 . GIỚI HẠN HÀM SỐ. Dạng 1. Dãy số có giới hạn hữu hạn. Dạng 2. Giới hạn một bên. Dạng 3. Giới hạn tại vô cực. Dạng 4. Dạng vô định 0/0. Dạng 5. Dạng vô định vô cực / vô cực. Dạng 6. Dạng vô định vô cực – vô cực, 0 . vô cực. BÀI 3 . HÀM SỐ LIÊN TỤC. Dạng 1. Xét tính liên tục của hàm số. Dạng 2. Hàm số liên tục tại một điểm. Dạng 3. Hàm số liên tục trên một khoảng. Dạng 4. Số nghiệm của phương trình trên một khoảng.
Hướng dẫn giải các dạng toán giới hạn
Tài liệu gồm 97 trang, hướng dẫn giải các dạng toán giới hạn trong chương trình Đại số và Giải tích 11 chương 4. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. + Dạng 1.1. Dùng định nghĩa chứng minh giới hạn. + Dạng 1.2. Tính giới hạn dãy số dạng phân thức. + Dạng 1.3. Tính giới hạn dãy số dạng phân thức chứa a^n. + Dạng 1.4. Dãy số dạng Lũy thừa – Mũ. + Dạng 1.5. Giới hạn dãy số chứa căn thức. BÀI 2 . GIỚI HẠN HÀM SỐ. + Dạng 2.1. Giới hạn của hàm số dạng vô định 0/0. + Dạng 2.2. Giới hạn dạng vô định ∞/∞; ∞ – ∞; 0.∞. + Dạng 2.3. Tính giới hạn hàm đa thức, hàm phân thức và giới hạn một bên. BÀI 3 . HÀM SỐ LIÊN TỤC. + Dạng 3.1. Xét tính liên tục của hàm số tại một điểm. + Dạng 3.2. Hàm số liên tục trên một tập hợp. + Dạng 3.3. Dạng tìm tham số để hàm số liên tục – gián đoạn. + Dạng 3.4. Chứng minh phương trình có nghiệm. BÀI 4 . ĐỀ KIỂM TRA CHƯƠNG IV.
Lý thuyết và bài tập chuyên đề giới hạn - Phùng Hoàng Em
Tài liệu gồm 31 trang, được biên soạn bởi thầy giáo Phùng Hoàng Em, tóm tắt lý thuyết và tuyển chọn các bài tập trắc nghiệm (có đáp án) các chuyên đề: giới hạn của dãy số, giới hạn của hàm số, hàm số liên tục; giúp học sinh lớp 11 rèn luyện khi học chương trình Đại số và Giải tích 11 chương 4: Giới hạn. Mục lục tài liệu lý thuyết và bài tập chuyên đề giới hạn – Phùng Hoàng Em: 1. GIỚI HẠN CỦA DÃY SỐ. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Khử vô định dạng ∞/∞. Dạng 2. Khử vô định dạng ∞ − ∞. Dạng 3. Một số quy tắc tính giới hạn vô cực. Dạng 4. Tổng của cấp số nhân lùi vô hạn. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 2. GIỚI HẠN CỦA HÀM SỐ. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Giới hạn của hàm số khi x → x0. Khử dạng vô định 0/0. Dạng 2. Giới hạn của hàm số khi x → ±∞. Khử dạng vô định ∞/∞; ∞ − ∞; 0·∞. Dạng 3. Giới hạn một bên. Sự tồn tại giới hạn. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 3. HÀM SỐ LIÊN TỤC. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Xét tính liên tục của hàm số tại một điểm. Dạng 2. Xét tính liên tục của hàm số trên miền xác định. Dạng 3. Tìm giá trị của tham số để hàm số liên tục – gián đoạn. Dạng 4. Chứng minh phương trình có nghiệm. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 4. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ.