Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Thừa Thiên Huế

Thứ Bảy ngày 05 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Để phục vụ công tác phòng chống dịch COVID – 19, một công ty A lên kế hoạch trong một thời gian quy định làm 20000 tấm chắn bảo hộ để tặng các chốt chống dịch. Do ý thức khẩn trương trong công tác hỗ trợ chống dịch và nhờ cải tiến quy trình làm việc nên mỗi ngày công ty A làm được nhiều hơn 300 tấm so với kế hoạch ban đầu. Vì thế, công ty A đã hoàn thành kế hoạch sớm hơn đúng một ngày so với thời gian quy định và làm được nhiều hơn 700 tấm so với kế hoạch ban đầu. Biết rằng số tấm làm ra trong mỗi ngày là bằng nhau và nguyên cái. Hỏi theo kế hoạch ban đầu, mỗi ngày công ty A cần làm bao nhiêu tấm chắn bảo hộ? + Cho ba điểm A B C phân biệt, cố định và thẳng hàng sao cho B nằm giữa A và C. Vẽ nửa đường tròn tâm O đường kính BC. Từ A kẻ tiếp tuyến AM đến nửa đường tròn (O) (M là tiếp điểm). Trên cung MC lấy điểm E (E không trùng với M và C), đường thẳng AE cắt nửa đường tròn (O) tại điểm thứ hai là F (F không trùng E). Gọi I là trung điểm của EF và H là hình chiếu vuông góc của điểm M lên đường thẳng BC. Chứng minh: a) Tứ giác AMIO nội tiếp. b) Hai tam giác OFH và OAF đồng dạng. c) Trọng tâm G của tam giác OEF luôn nằm trên một đường tròn cố định khi điểm E thay đổi trên cung MC. + Một khúc gỗ đặc có dạng hình trụ, bán kính hình tròn đáy là 10 cm, chiều cao bằng 20 cm, người ta tiện bỏ bên trong khúc gỗ một vật dạng hình nón có bán kính hình tròn đáy là 10 cm, chiều cao bằng một nửa chiều cao của khúc gỗ (như hình vẽ bên). Tính thể tích phần khúc gỗ còn lại.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Ngô Quyền - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Ngô Quyền, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Ngô Quyền – Thái Nguyên : + Cho hình vuông ABCD có cạnh là 2 cm. Đường tròn tâm O ngoại tiếp hình vuông. Tính diện tích hình tròn tâm O? [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Qua A vẽ hai cát tuyến CAD và EAF (C, E thuộc (O); D, F thuộc (O’)). Đường thẳng CE cắt đường thẳng DF tại P. Chứng minh tứ giác BEPF nội tiếp. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), gọi BD, CE là các đường cao của tam giác ABC. Chứng minh OA vuông góc DE.
Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Gang Thép - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Gang Thép, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Gang Thép – Thái Nguyên : + Trên một vùng biển được xem như bằng phẳng và không có chướng ngại vật, vào lúc 6 giờ có một tàu cá đi thẳng qua tọa độ X theo hướng Từ Nam đến Bắc với vận tốc không đổi. Đến 7 giờ cùng ngày một tàu du lịch cũng đi thẳng qua tọa độ X theo hướng từ Đông sang Tây với vận tốc lớn hơn vận tốc tàu cá 12 km/h. Đến 8 giờ cùng ngày, khoảng cách giữa hai tàu là 60 km. Tính vận tốc của mỗi tàu. + Cho hai đường tròn (O1, R1) và (O2, R2) tiếp xúc ngoài tại E. Vẽ tiếp tuyến chung ngoài MN của hai đường tròn (M∈(O1); N∈(O2)), vẽ tiếp tuyến chung trong của hai đường tròn tại E cắt MN tại A. a) Chứng minh: tứ giác MAEO1 và tứ giác NAEO2 là các tứ giác nội tiếp. b) Tính MN theo R1, R2. [ads] + Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE. K là giao điểm của DE và AH. F là giao điểm của AH và BC. M là trung điểm của AH. Chứng minh rằng: MA2 = MK.MF.
Đề thi thử vào 10 môn Toán năm 2020 - 2021 trường THPT Lương Ngọc Quyến - Thái Nguyên
Ngày … tháng 06 năm 2020, trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn thi Toán. Đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THPT Lương Ngọc Quyến – Thái Nguyên gồm 01 trang với 10 bài toán dạng tự luận, mỗi bài toán tương ứng với 01 điểm, thời gian làm bài 120 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Cho tứ giác ABCD có AC vuông góc với BD, AC = 8cm, BD = 6cm. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Chứng minh rằng bốn điểm E, F, G, H thuộc cùng một đường tròn, tính bán kính của đường tròn đó. + Cho tam giác ABC cân tại A. Vẽ đường tròn (O;R) tiếp xúc với AB, AC tại B, C. Một điểm M bất kỳ nằm trên cạnh BC, vẽ đường thẳng vuông góc với OM cắt tia AB, AC lần lượt tại D, E. Chứng minh tam giác ODE cân. [ads] + Cho hai đường tròn (O;R) và (O’;R’) với R > R’ cắt nhau tại hai điểm A, B. Kẻ tiếp tuyến chung DE của hai đường tròn (D thuộc (O), E thuộc (O’) sao cho B gần tiếp tuyến hơn so với A. Gọi M là giao điểm của AB và DE. a. Chứng minh rằng MD^2 = ME^2 = MA.MB. b. Đường thẳng EB cắt AD tại P, đường thẳng DB cắt AE tại Q. Chứng minh rằng PQ song song với DE.
Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 phòng GDĐT Lộc Bình - Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021 phòng GD&ĐT Lộc Bình – Lạng Sơn; đề thi gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Lộc Bình – Lạng Sơn : + Một khu vườn hình chữ nhật có chu vi 280m. Người ta làm một lối đi xung quanh vườn (thuộc đất vườn) rộng 2m, diện tích còn lại để trồng trọt là 4256 m2. Tính kích thước (các cạnh) của khu vườn đó. [ads] + Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm M. Đường tròn tâm O đường kính MC cắt BC tại điểm E. Đường thẳng BM cắt đường tròn (O) tại điểm D. a) Chứng minh tứ giác ABEM nội tiếp. b) Chứng minh rằng ME.CB = MB.CD. c) Gọi I là giao điểm của BA và CD, J là tâm đường tròn ngoại tiếp tam giác IBC. Chứng minh rằng AD vuông góc với IJ. + Cho a, b, c là các số thực không âm thỏa mãn 0 ≤ a ≤ b ≤ c ≤ 1. Tìm giá trị lớn nhất của biểu thức: Q = a^2.(b – c) + b^2.(c – b) + c^2.(1 – c).