Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa

Tài liệu gồm 255 trang, được biên soạn bởi Ths Toán Giải Tích Nguyễn Hữu Chung Kiên, tuyển tập 28 chuyên đề phân loại theo 50 câu trắc nghiệm, 10 đề chuẩn cấu trúc theo đề minh họa môn Toán năm 2022 của Bộ Giáo dục và Đào tạo và 05 đề thi thử TN THPT môn Toán của các trường THPT / sở GD&ĐT có ảnh hưởng trên cả nước. MỤC LỤC : 1 Hoán vị, chỉnh hợp, tổ hợp 1. A Kiến thức cần nhớ 1. B Bài tập mẫu 2. C Bài tập tương tự và phát triển 2. D Bảng đáp án 3. 2 Cấp số cộng – Cấp số nhân 4. A Kiến thức cần nhớ 4. B Bài tập mẫu 4. C Bài tập tương tự và phát triển 5. D Bảng đáp án 6. 3 Xác suất của biến cố 7. A Kiến Thức Cần Nhớ 7. B Bài Tập Mẫu 8. C Bài Tập Tương Tự và Phát Triển 8. D Bảng đáp án 13. 4 Đọc bảng biến thiên, đồ thị 14. A Kiến thức cần nhớ 14. B Bài tập mẫu 14. C Bài tập tương tự và phát triển 16. D Bảng đáp án 28. 5 Tìm GTLN – GTNN của hàm số trên đoạn 29. A Kiến Thức Cần Nhớ 29. B Bài Tập Mẫu 29. C Bài Tập Tương Tự và Phát Triển 29. D Bảng đáp án 31. 6 Tiệm cận của đồ thị hàm số 32. A Kiến thức cần nhớ 32. B Bài tập mẫu 32. C Bài tập tương tự và phát triển 32. D Bảng đáp án 35. 7 Khảo sát, nhận dạng hàm số, đồ thị 36. A Kiến thức cần nhớ 36. B Bài tập mẫu 37. C Bài tập tương tự và phát triển 38. D Bảng đáp án 42. 8 Hàm số lũy thừa, mũ, logarit 43. A Kiến thức cần nhớ 43. B Bài tập mẫu 45. C Bài tập tương tự và phát triển 45. D Bảng đáp án 49. 9 Phương trình – bất phương trình mũ, logarit 50. A Kiến thức cần nhớ 50. B Bài tập mẫu 51. C Bài tập tương tự và phát triển 51. D Bảng đáp án 54. 10 Công thức tính nguyên hàm cơ bản 55. A Kiến thức cần nhớ 55. B Bài tập mẫu 55. C Bài tập tương tự và phát triển 56. D Bảng đáp án 60. 11 Sử dụng tích chất của tích phân 61. A Kiến thức cần nhớ 61. B Bài tập mẫu 61. C Bài tập tương tự và phát triển 62. D Bảng đáp án 64. 12 Số phức 65. A Kiến thức cần nhớ 65. B Bài tập mẫu 66. C Bài tập tương tự và phát triển 67. D Bảng đáp án 71. 13 Góc 72. A Kiến Thức Cần Nhớ 72. B Bài Tập Mẫu 73. C Bài Tập Tương Tự và Phát Triển 74. D Bảng đáp án 76. 14 Khoảng cách 77. A Kiến Thức Cần Nhớ 77. B Bài Tập Mẫu 78. C Bài Tập Tương Tự và Phát Triển 79. D Bảng đáp án 80. 15 Thể tích khối đa diện 81. A Kiến thức cần nhớ 81. B Bài tập mẫu 83. C Bài tập tương tự và phát triển 83. D Bảng đáp án 87. 16 Khối nón 88. A Kiến thức cần nhớ 88. B Bài tập mẫu 90. C Bài tập tương tự và phát triển 90. D Bảng đáp án 93. 17 Khối trụ 94. A Kiến thức cần nhớ 94. B Bài tập mẫu 94. C Bài tập tương tự và phát triển 94. D Bảng đáp án 97. 18 Khối cầu 98. A Kiến Thức Cần Nhớ 98. B Bài Tập Mẫu 98. C Bài Tập Tương Tự và Phát Triển 99. D Bảng đáp án 102. 19 Phương pháp tọa độ trong không gian 103. A Kiến Thức Cần Nhớ 103. B Bài Tập Mẫu 104. C Bài Tập Tương Tự và Phát Triển 104. D Bảng đáp án 105. 20 Phương trình mặt phẳng 106. A Kiến Thức Cần Nhớ 106. B Bài Tập Mẫu 106. C Bài Tập Tương Tự và Phát Triển 107. D Bảng đáp án 108. 21 Phương trình đường thẳng 109. A Kiến Thức Cần Nhớ 109. B Bài Tập Mẫu 109. C Bài Tập Tương Tự và Phát Triển 110. D Bảng đáp án 116. 22 Giá trị nguyên thỏa biểu thức mũ, logarit – Vận dụng 117. A Kiến Thức Cần Nhớ 117. B Bài Tập Mẫu 117. C Bài Tập Tương Tự và Phát Triển 117. D Bảng đáp án 124. 23 Phương trình hàm hợp – Vận dụng 125. A Kiến Thức Cần Nhớ 125. B Bài Tập Mẫu 125. C Bài Tập Tương Tự và Phát Triển 126. D Bảng đáp án 130. 24 Max – min số phức – Vận dụng 131. A Kiến Thức Cần Nhớ 131. B Bài Tập Mẫu 131. C Bài Tập Tương Tự và Phát Triển 131. D Bảng đáp án 133. 25 Diện tích hình phẳng – Vận dụng 134. A Kiến Thức Cần Nhớ 134. B Bài Tập Mẫu 134. C Bài Tập Tương Tự và Phát Triển 135. D Bảng đáp án 138. 26 Phương pháp tọa độ trong không gian – Vận dụng 139. A Kiến Thức Cần Nhớ 139. B Bài Tập Mẫu 139. C Bài Tập Tương Tự và Phát Triển 139. D Bảng đáp án 143. 27 Cực trị hàm ẩn – hàm hợp – Vận dụng 144. A Kiến Thức Cần Nhớ 144. B Bài Tập Mẫu 144. C Bài Tập Tương Tự và Phát Triển 145. D Bảng đáp án 151. 28 Hàm đặc trưng 152. A Bài tập trắc nghiệm 152. B Bảng đáp án 157. 29 ĐỀ THI THPT QUỐC GIA 2021 − LẦN 2 158. 30 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 1 163. 31 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 2 168. 32 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 3 174. 33 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 4 180. 34 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 5 186. 35 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 6 192. 36 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 7 198. 37 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 8 203. 38 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 9 208. 39 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 10 214. 40 ĐỀ THI THỬ SGD HƯNG YÊN 220. 41 ĐỀ THI THỬ SGD BÀ RỊA − VŨNG TÀU 226. 42 ĐỀ THI THỬ SGD VĨNH PHÚC 232. 43 ĐỀ THI THỬ SGD HẠ LONG 238. 44 ĐỀ THI THỬ CHUYÊN ĐHSP HÀ NỘI 244.

Nguồn: toanmath.com

Đọc Sách

Bài toán thực tế và bài toán tối ưu min max Lê Viết Nhơn
Nội dung Bài toán thực tế và bài toán tối ưu min max Lê Viết Nhơn Bản PDF - Nội dung bài viết Bài toán thực tế và bài toán tối ưu min max Bài toán thực tế và bài toán tối ưu min max Trong tài liệu đặc biệt này, thầy Lê Viết Nhơn đã tổng hợp 23 trang về các bài toán thực tế và bài toán tối ưu min - max, với mục đích giúp học sinh hiểu rõ hơn về những vấn đề này. Phần 1 của tài liệu tập trung vào bài toán thực tế tối ưu, giúp người đọc có cái nhìn tổng quan về cách tiếp cận và giải quyết các vấn đề thực tế một cách tối ưu nhất. Phần 2 và Phần 3 của tài liệu bao gồm các bài toán thực tế liên quan đến tích phân, mũ, và logarit, giúp học sinh áp dụng kiến thức toán học vào các bài toán hàng ngày. Cuối cùng, Phần 4 chứa các bài tập rèn luyện được trích từ đề thi thử các trường THPT, giúp học sinh ôn tập và cải thiện kỹ năng giải bài toán. Với các ví dụ như việc gấp tấm kẽm thành hình lăng trụ, xác định vị trí điểm M để diện tích hình chữ nhật lớn nhất, và vấn đề thả cá trên một đơn vị diện tích hồ, tài liệu này không chỉ giúp học sinh hiểu rõ về bài toán tối ưu min - max mà còn giúp họ áp dụng kiến thức vào thực tế một cách linh hoạt và sáng tạo.
Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 2017 môn Toán Đoàn Quỳnh
Nội dung Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 2017 môn Toán Đoàn Quỳnh Bản PDF - Nội dung bài viết Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016-2017 môn Toán Đoàn Quỳnh Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016-2017 môn Toán Đoàn Quỳnh Sách ôn tập này bao gồm 246 trang và được chia thành 2 phần chính: Phần 1: Ôn tập theo chủ đề: Phần này tập trung vào việc ôn lại những kiến thức cơ bản, kỹ năng quan trọng cần thiết cho kỳ thi THPT Quốc gia môn Toán. Ngoài ra, sách cũng cung cấp một số câu hỏi trắc nghiệm theo 7 chủ đề chương trình Toán lớp 12. Điều này giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải các bài toán một cách hiệu quả. Phần 2: Một số đề tự luyện: Phần này cung cấp 9 đề thi tự luyện, được biên soạn theo đề minh họa của Bộ Giáo dục và Đào tạo đã được công bố. Đây là cơ hội tuyệt vời để học sinh tự kiểm tra năng lực và chuẩn bị tốt nhất cho kỳ thi sắp tới. Sách được xuất bản bởi Nhà xuất bản Giáo dục Việt Nam, đảm bảo chất lượng và tính chính xác trong từng bài học. Đây sẽ là nguồn tư liệu hữu ích không chỉ cho học sinh mà còn cho giáo viên và các bậc phụ huynh quan tâm đến việc chuẩn bị cho kỳ thi quan trọng này.
Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu
Nội dung Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu Bản PDF - Nội dung bài viết Giới thiệu sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" Giới thiệu sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" Sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" là một tài liệu giáo trình toán học cung cấp kiến thức chi tiết và cụ thể về 11 chuyên đề quan trọng trong môn Toán. Với tổng cộng 449 trang, sách bao gồm các chuyên đề sau: + Chuyên đề 1: Ứng dụng đạo hàm + Chuyên đề 2: Hàm số lũy thừa, mũ và logarit + Chuyên đề 3: Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4: Số phức + Chuyên đề 5: Hình học không gian + Chuyên đề 6: Phương pháp tọa độ trong không gian + Chuyên đề 7: Lượng giác + Chuyên đề 8: Đại số tổ hợp và xác suất + Chuyên đề 9: Giới hạn, liên tục + Chuyên đề 10: Hình học Oxy + Chuyên đề 11: Phương trình, bất phương trình đại số Đây là nguồn tư liệu hữu ích để học sinh, sinh viên củng cố kiến thức Toán một cách hiệu quả, giúp họ nắm vững và áp dụng các kiến thức lý thuyết vào thực hành trắc nghiệm. Nội dung sách được biên soạn một cách dễ hiểu, giúp người đọc tiếp cận môn học một cách tự tin và hiệu quả.
131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài
Nội dung 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Bản PDF - Nội dung bài viết Bảng 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Bảng 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Trong tài liệu này, bạn sẽ được giải quyết 131 bài toán thực tế phổ biến do thầy Trần Văn Tài biên soạn. Mỗi bài toán đều được giải chi tiết để giúp bạn hiểu rõ hơn về cách giải quyết. 1. Bài toán về việc kéo đường dây điện từ trạm phát đến Con Đảo, với chi phí cụ thể cho việc đặt dây dưới nước và trên bờ. Bạn sẽ được yêu cầu tìm điểm G cách A bao nhiêu để chi phí là ít nhất. 2. Bài toán về việc cắt tấm nhôm thành hình thang để có diện tích nhỏ nhất. Bạn cần tìm tổng x + y để đạt được điều đó. 3. Bài toán liên quan đến việc chọn chiếc hộp và mạ vàng để tặng vợ vào ngày phụ nữ Việt Nam. Bạn sẽ phải tính toán chiều cao và cạnh đáy của chiếc hộp để lượng vàng là nhỏ nhất. Thông qua việc giải quyết những bài toán này, bạn sẽ được rèn luyện kỹ năng tư duy logic và giải quyết vấn đề một cách chính xác và logic. Ngoài ra, nội dung của tài liệu cũng giúp bạn áp dụng kiến thức toán học vào thực tế một cách hiệu quả.