Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 10 năm 2023 - 2024 trường THPT Quế Sơn - Quảng Nam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 năm học 2023 – 2024 trường THPT Quế Sơn, tỉnh Quảng Nam; đề thi có đáp án và hướng dẫn chấm điểm mã đề 101 102 103 104. Trích dẫn Đề cuối kỳ 1 Toán 10 năm 2023 – 2024 trường THPT Quế Sơn – Quảng Nam : + Phát biểu nào sau đây là mệnh đề? A. Trường THPT Quế Sơn thành lập vào năm 1958. B. Bạn thích học môn nào nhất? C. Hãy hãy làm bài kiểm tra Toán thật nghiêm túc! D. 3x + 1 < 0. + Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, Anh Nam chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Anh Nam đo được AB m 40 0 CAB 45 0 CBA 70 (tham khảo hình vẽ bên dưới). Hãy cho biết khoảng cách AC bằng bao nhiêu?(làm tròn kết quả đến hàng phần trăm). + Trong mặt phẳng với hệ trục tọa độ Oxy; cho tam giác ABC có A(-1;1), B(1;3) và trọng tâm là 2 2 3 G. Tìm tọa độ điểm M trên trục Oy sao cho tam giác MBC vuông cân tại M.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Xác định a, b, c để parabol (P): y = ax2 + bx + c đi qua ba điểm A(1;4), B(-1;20) và C(2;2). + Cho tam giác ABC có AB = 10; AC = 6; góc BAC = 60 độ. Tính độ dài cạnh BC và độ dài đường cao AH của tam giác ABC. + Cho 2 =< x =< 5. Tìm GTNN của hàm số f(x) = (2 – x)√(5 – x).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Marie Curie - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Marie Curie, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;0), B(4;5) và C(8;-1). Chứng minh rằng tam giác ABC cân. Tìm tọa độ chân đường cao H kẻ từ đỉnh A của tam giác ABC. + Tìm tất cả các giá trị của tham số m để phương trình √(2x^2 – x + m) = x – 2 có nghiệm. + Cho hàm số y = -2×2 + 4x + 6 có đồ thị là parabol (P). a) Tìm tọa độ đỉnh I và phương trình trục đối xứng của parabol (P). b) Tìm tọa độ giao điểm của đồ thị (P) và trục hoành. Tính khoảng cách giữa hai giao điểm đó.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Trung Trực - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Trung Trực, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Trung Trực – TP HCM : + Trong mặt phẳng tọa độ Oxy cho A (–2;–2), B (3;8), C (6;2). a) Chứng minh A, B, C là ba đỉnh của tam giác và tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm điểm D sao cho ABCD là hình bình hành và tìm tọa độ tâm I của hình bình hành. c) Chứng minh tam giác ABC vuông và tính diện tích của tam giác. d) Tìm tọa độ H là chân đường cao hạ từ đỉnh góc vuông xuống cạnh huyền của tam giác ABC. + Định tham số m để phương trình sau có tập nghiệm là R: m2(x + 1) – 1 = (4 – 3m)x. + Định tham số m để phương trình: (m + 1)x2 + 2(m – 2)x + m = 0 có hai nghiệm phân biệt.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thăng Long - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thăng Long – TP HCM : + Cho Parabol (P): y = -x2 – 2x + 2 và đường thẳng (d): y = 2x – 3. a) Lập bảng biến thiên và vẽ đồ thị (P). b) Tìm giao điểm của (P) và (d). + Cho tam giác ABC, có tọa độ các đỉnh A(2;4), B(1;2), C(6;2). a) Tìm tọa độ trung điểm của cạnh AC và trọng tâm G của tam giác ABC. b) Chứng minh ABC là tam giác vuông và tính diện tích tam giác ABC. c) Xác định tọa độ điểm D sao cho ABCD là hình bình hành. + Giải các phương trình sau.