Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 10 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Tĩnh

Nội dung Đề thi chọn HSG lớp 10 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn HSG lớp 10 môn Toán năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh Đề thi chọn HSG lớp 10 môn Toán năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh Trong năm học 2019-2020, Trường THPT Trần Phú - Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 để tuyển chọn những em học sinh có thành tích xuất sắc vào đội tuyển học sinh giỏi Toán của nhà trường. Đề thi chọn HSG Toán lớp 10 năm 2019-2020 được biên soạn trong hình thức tự luận, bao gồm 5 bài toán trên 1 trang với thời gian làm bài là 120 phút. Lời giải chi tiết được biên soạn bởi nhóm Toán VD - VDC của trường. Một số câu hỏi trong đề thi gồm: - Cho hàm số y = (m - 2)x^2 - 2(m - 1)x + m + 2 (trong đó m là tham số). Yêu cầu: Xác định giá trị của m để đồ thị hàm số là một đường parabol có tung độ đỉnh bằng 3m, và tìm giá trị của m để hàm số là nghịch biến trên khoảng (-∞;2). - Trong hệ tọa độ Oxy, cho hình thang ABCD có các tọa độ điểm A(-2;-2), B(0;4) và C(7;3).Yêu cầu: Tìm tọa độ điểm E để thỏa mãn điều kiện EA + EB + 2EC = 0, tìm giá trị nhỏ nhất của |PA + PB + 2PC| với P là điểm di động trên trục hoành, và tìm tọa độ đỉnh D của hình thang ABCD nếu diện tích hình thang gấp 3 lần diện tích tam giác MBC. - Cho tam giác ABC đều cạnh 3a, điểm M trên BC, điểm N trên CA sao cho BM = a, CN = 2a. Yêu cầu: Tìm tích vô hướng AM.BC theo a, tính độ dài của PN nếu AM vuông góc với PN. Đề thi chọn HSG Toán lớp 10 năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh mang đến cho các em học sinh cơ hội thể hiện kiến thức và khả năng giải quyết bài toán hiệu quả, từ đó chinh phục được những vấn đề khó trong môn Toán. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 10 THPT năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi (HSG) môn Toán 10 chương trình THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi mã đề 111, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 10 THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Khi một quả bóng được đá lên từ độ cao 0 h, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo chuyển động của quả bóng là một parabol và độ cao h của quả bóng được tính bởi công thức 2 0 0 2 h t at v t h trong đó độ cao h và độ cao ban đầu 0 h được tính bằng mét, t là thời gian chuyển động tính bằng giây, a là gia tốc chuyển động tính bằng 2 0 m s v là vận tốc ban đầu tính bằng m s. Biết rằng sau 0,5 giây quả bóng đạt được độ cao 6,075 m; sau 1 giây quả bóng đạt độ cao 8,5 m; sau 2 giây quả bóng đạt độ cao 6 m. Độ cao lớn nhất của quả bóng được đá lên so với mặt đất là (kết quả được làm tròn đến hàng phần chục). + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Cho tam giác ABC có trọng tâm G. Gọi I là trung điểm của cạnh BC và M là điểm thỏa mãn: 2 3 MA MB MC MB MC. Khi đó, tập hợp các điểm M là A. đường trung trực của đoạn thẳng IG. B. đường trung trực của đoạn thẳng BC. C. đường tròn tâm I, bán kính BC. D. đường tròn tâm G, bán kính BC.
Đề học sinh giỏi Toán 10 năm 2022 - 2023 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi văn hóa môn Toán 10 THPT năm học 2022 – 2023 trường THPT Thị xã Quảng Trị; kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2022 – 2023 trường THPT Thị xã Quảng Trị : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12gam hương liệu, 9 lít nước và 315gam đường để pha chế hai loại nước A và B. Để pha chế 1 lít nước A cần 45gam đường, 1 lít nước và 0,5gam hương liệu; để pha chế 1 lít nước B cần 15gam đường, 1 lít nước và 2gam hương liệu. Mỗi lít nước A nhận 60 điểm thưởng, mỗi lít nước B nhận 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất? + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là điểm trên cạnh AB sao cho AB AD 3 và H là hình chiếu vuông góc của B trên CD. Điểm 1 3 2 2 M là trung điểm HC. Xác định tọa độ đỉnh C, biết đỉnh B nằm trên đường thẳng có phương trình x y 7 0. + Một sa mạc có dạng hình chữ nhật ABCD có DC km 25 CB km 20 và P Q lần lượt là trung điểm của AD BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn PQ rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABQP là 15 km h vận tốc của ngựa khi đi trên phần PQCD là 30 km h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất?
Đề Olympic 30 tháng 4 Toán 10 năm 2023 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic truyền thống 30 tháng 4 môn Toán 10 lần thứ XXVII năm 2023 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề Olympic 30 tháng 4 Toán 10 năm 2023 trường chuyên Lê Hồng Phong – TP HCM : + Gọi S là tập hợp các số nguyên n (n > 1) sao cho với n số thực bất kỳ thuộc khoảng (−2;2) có tổng bằng 0 thì tổng lũy thừa bậc 4 của chúng luôn nhỏ hơn 32. Chứng minh S = {2;3}. + Tìm giá trị nhỏ nhất của f(x;y) = 2^x − 5^y với x và y là hai số nguyên dương thỏa mãn 2^x >= 5^y. Tìm tất cả các số nguyên dương N có đúng hai ước nguyên tố là 2 và 5, đồng thời N + 4 là số chính phương. + Cho 4 hình vuông đơn vị xếp kề nhau như hình vẽ. Có bao nhiêu cách tô màu 10 đỉnh của các hình vuông đơn vị bởi k màu khác nhau (mỗi đỉnh tô 1 màu) sao cho không có hai đỉnh kề nhau nào cùng màu khi k = 3? k = 10? (trong hình vẽ có tất cả 13 cặp đỉnh kề nhau). Có bao nhiêu cách tô màu 8 đỉnh của hình lập phương bởi 3 màu khác nhau (mỗi đỉnh tô 1 màu) sao cho không có hai đỉnh kề nhau nào cùng màu? (trong hình lập phương có tất cả 12 cặp đỉnh kề nhau).
Đề học sinh giỏi Toán 10 chuyên năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT chuyên năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 10 chuyên năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho bộ ba số xyp trong đó x y là các số nguyên dương và p là số nguyên tố. Xét phương trình: 5 4 1 y xx p. a. Với p = 2, chứng minh rằng không tồn tại x y nguyên dương thỏa mãn phương trình trên. b. Tìm tất cả các bộ ba số xyp thỏa mãn phương trình trên. + Cho tam giác nhọn ABC (AB ≤ AC) nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC CA AB lần lượt tại DEF. Đường thẳng qua D vuông góc với EF cắt EF tại điểm X và cắt đường tròn (I) tại KK D. a. Chứng minh rằng XE AC BC AB XF AB BC AC b. Đường thẳng AK cắt (O) tại điểm LL A. Các tia KI IL cắt đường tròn ngoại tiếp tam giác BIC lần lượt tại NMN IM I. Đường tròn ngoại tiếp các tam giác KFB KEC cắt đường thẳng EF lần lượt tại PQ P FQ E. Chứng minh rằng các điểm NCP thẳng hàng. c. Chứng minh rằng tứ giác MNPQ nội tiếp một đường tròn. + Cho tập hợp S = {1; 2; 3; …; 2022}. Một tập con A của S được gọi là tập con “Tốt” của tập S nếu trong A có ba số phân biệt xyz thỏa mãn tính chất: tồn tại ba số abc phân biệt trong S sao cho x b cy c az a b. Số tự nhiên n n (1 2022) được gọi là số “Đẹp” của tập S nếu mọi tập con có n phần tử của tập S đều là tập con “Tốt” của tập S. a. Chứng minh rằng n = 1012 không phải là số “Đẹp” của tập S. b. Tìm số “Đẹp” nhỏ nhất của tập S.