Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình mặt phẳng - Nguyễn Bảo Vương

Tài liệu gồm 68 trang được biên soạn bởi thầy Nguyễn Bảo Vương bao gồm tóm tắt lý thuyết, các dạng toán, hướng dẫn giải và bài tập về chủ đề phương trình mặt phẳng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian, các bài toán trong tài liệu có đáp án và lời giải chi tiết. Các dạng toán về phương trình mặt phẳng và cách giải : Dạng 1 . Phương trình mặt phẳng Phương pháp : Phương trình: Ax + By + Cz + D = 0 là phương trình của một mặt phẳng khi và chỉ khi A2 + B2 + C2 > 0. Chú ý : Đi kèm với họ mặt phẳng (Pm) thường có thêm các câu hỏi phụ: + Câu hỏi 1: Chứng minh rằng họ mặt phẳng (Pm) luôn đi qua một điểm cố định. + Câu hỏi 2: Cho điểm M có tính chất K, biện luận theo vị trí của M số mặt phẳng của họ (Pm) đi qua M. + Câu hỏi 3: Chứng minh rằng họ mặt phẳng (Pm) luôn chứa một đường thẳng cố định. Dạng 2 . Viết phương trình mặt phẳng Phương pháp : Để viết phương trình mặt phẳng (P) ta có thể lựa chọn một trong các cách sau: Cách 1: Thực hiện theo các bước: + Bước 1. Xác định điểm M0(x0; y0; z0) ∈ (P) và vectơ pháp tuyến (VTPT) n(n1; n2; n3) của (P). + Bước 2. Khi đó, phương trình mặt phẳng (P): n1(x − x0) + n2(y − y0) + n3(z − z0) = 0. Cách 2: Sử dụng phương pháp quỹ tích. [ads] Chú ý : Chúng ta có các kết quả: 1. Mặt phẳng (P) đi qua điểm M(x0; y0; z0), luôn có dạng: (P): A(x − x0) + B(y − y0) + C(z − z0) = 0. 2. Mặt phẳng (P) có vectơ pháp tuyến (VTPT) n(n1; n2; n3), luôn có dạng: (P): n1x + n2y + n3z + D = 0. Để xác định (P), ta cần đi xác định D. 3. Mặt phẳng (P) song song với (Q): Ax + By + Cz + D = 0, luôn có dạng (P): Ax + By + Cz + E = 0. Để xác định (P), ta cần đi xác định E. 4. Phương trình mặt phẳng theo các đoạn chắn, đó là mặt phẳng (P) đi qua ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) có phương trình (P): x/a + y/b + z/c = 1. 5. Với phương trình mặt phẳng (P) đi qua ba điểm không thẳng hàng M, N, P chúng ta có thể lựa chọn một trong hai cách sau: + Cách 1: Gọi n là vectơ pháp tuyến (VTPT) của mặt phẳng (P), ta có: n = [MN, MP]. Khi đó, phương trình mặt phẳng (P) đi qua M và có vectơ pháp tuyến (VTPT) là n. + Cách 2: Giả sử mặt phẳng (P) có phương trình: Ax + By + Cz + D = 0, (1) với A2 + B2 + C2 > 0. Vì M, N, P thuộc mặt phẳng (P) nên ta có hệ ba phương trình với bốn ẩn A, B, C, D. Biểu diễn ba ẩn theo một ẩn còn lại, rồi thay vào (1) chúng ta nhận được phương trình mặt phẳng (P). Dạng 3 . Vị trí tương đối của hai mặt phẳng Phương pháp : Sử dụng kiến thức trong phần vị trí tương đối của hai mặt phẳng. Dạng 4 . Vị trí tương đối của mặt cầu với mặt phẳng Phương pháp : Ta thực hiện theo các bước: Bước 1. Xác định tâm I và tính bán kính R của mặt cầu (S). Xác định d = d(I, (P)). Bước 2. So sánh d với R để đưa ra kết luận: + Nếu d > R ⇔ (P) ∩ (S) = ∅. + Nếu d = R ⇔ (P) tiếp xúc với (S) tại H. + Nếu d < R ⇔ (P) ∩ (S) = (C) là một đường tròn nằm trong mặt phẳng (P).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương pháp tọa độ trong không gian - Ngô Nguyên
Tài liệu gồm 100 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian. Nội dung tài liệu gồm: + Chủ đề 1. Các phép toán về tọa độ véc tơ. Xác định điểm – một số tính chất hình học Dạng 1: Chứng minh A, B, C là ba đỉnh tam giác Dạng 2: Tìm D sao cho ABCD là hình bình hành Dạng 3: Chứng minh ABCD là một tứ diện + Chủ đề 2. Phương trình mặt cầu Dạng 1: Biết trước tâm I và bán kính R Dạng 2: Mặt cầu đường kính AB Dạng 3: Mặt cầu tâm I tiếp xúc mặt phẳng (α) Dạng 4: Mặt cầu ngoại tiếp tứ diện ABCD Dạng 5: Mặt cầu đi qua A, B, C và tâm I thuộc (α) Dạng 6: Mặt phẳng tiếp xúc mặt cầu tại A [ads] + Chủ đề 3. Phương trình mặt phẳng Dạng 1. Mặt phẳng (α) đi qua M và có vectơ pháp tuyến n Dạng 2. Mặt phẳng qua 3 điểm A, B, C Dạng 3. Mặt phẳng trung trực đoạn AB Dạng 4. Mặt phẳng (α) qua M và vuông góc đường thẳng d (hoặc AB) Dạng 5. Mp (α) qua M và song song (α): Ax + By + Cz + D = 0 Dạng 6. Mp(α) chứa (d) và song song (d’) Dạng 7. Mp(α) qua M, N và vuông góc (β) Dạng 8. Mp(α) chứa (d) và đi qua M Dạng 9. Mp(α) đi qua M và vuông góc với hai mặt phẳng (β), (γ) cho trước Dạng 10. Mặt Phẳng (α) chứa hai đường thẳng Δ1, Δ2 cắt nhau + Chủ đề 4. Phương trình đường thẳng Dạng 1. Viết phương trình đường thẳng (d) đi qua M và có vectơ chỉ phương u Dạng 2. Đường thẳng d qua A và song song (α) Dạng 3. Đường thẳng (d) qua A và vuông góc mp(α) Dạng 4. PT d’ hình chiếu của d lên (α) Dạng 5. Đường thẳng (d) qua A và vuông góc 2 đường thẳng d1 và d2 Dạng 6. Phương trình đường vuông góc chung của d1 và d2 Dạng 7. PT d qua A và d cắt d1, d2 Dạng 8. PT d // Δ và cắt d1, d2 Dạng 9. PT d qua A và vuông góc với d1, cắt d2 Dạng 10: PT d ⊥ (P) cắt d1, d2
111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 12 trang với 111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : + Trong không gian Oxyz, cho mặt phẳng (P): 2x – 2y – z – 4 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2x – 4y – 6z – 11 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là? + Cho mặt phẳng (P): 3x + 4y + 12 = 0 và mặt cầu (S): x^2 + y^2 + (z – 2)^2 = 1. Khẳng định nào sau đây là đúng? A. (P) đi qua tâm của mặt cầu (S) B. (P) tiếp xúc với mặt cầu (S) [ads] C. (P) cắt mặt cầu (S) theo một đường tròn và mặt phẳng (P) không qua tâm của (S) D. (P) không có điểm chung với mặt cầu (S) + Khẳng định nào sau đây sai ? A. Nếu n là vectơ pháp tuyến của mặt phẳng thì kn với k khác 0 cũng là vectơ pháp tuyến của mặt phẳng đó. B. Mặt phẳng (P) có phương trình tổng quát là ax + by + cz + d = 0 với a, b, c không đồng thời bằng 0 thì nó có một vectơ pháp tuyến là n(a; b; c). C. Nếu a, b có giá song song hoặc nằm trong mặt phẳng thì tích có hướng của hai vectơ a, b gọi là vectơ pháp tuyến của mặt phẳng. D. Hai mặt phẳng vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng của chúng vuông góc với nhau.
100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 9 trang với 100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : 1. Trong không gian Oxyz, cho tam giác ABC với A(1;-4;2), B(-3;2;1), C(3;-1;4). Khi đó trọng tâm G của tam giác ABC là? 2. Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây nằm trên trục Oz? 3. Cho ba điểm A(2;0;2), B(1;2;3), C(x;y-3;7). Biết rằng x; y là giá trị để ba điểm A,B,C thẳng hàng. Khi đó tổng x + y bằng? [ads]
420 câu trắc nghiệm phương pháp tọa độ trong không gian - Trần Duy Thúc
Tài liệu gồm 77 trang tuyển chọn 420 câu trắc nghiệm phương pháp tọa độ trong không gian có đáp án do thầy Trần Duy Thúc biên soạn. Tài liệu được chia thành 6 phần: + Phần 1: Các bài toán về tọa độ điểm và vector. + Phần 2: Các bài toán về viết phương trình mặt phẳng. + Phần 3: Các bài toán về viết phương trình mặt cầu. + Phần 4: Các bài toán về viết phương trình đường thẳng. + Phần 5: Các bài toán vị trí tương đối. + Phần 6: Các bài toán tổng hợp. [ads]