Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn 50 dạng toán kỳ thi tốt nghiệp THPT môn Toán

Tài liệu gồm 689 trang, được tổng hợp bởi thầy giáo Th.S Nguyễn Hoàng Việt, tổng ôn 50 dạng toán kỳ thi tốt nghiệp THPT môn Toán. Bài 1. Phép Đếm 1. Bài 2. Cấp Số Cộng – Cấp Số Nhân 8. Bài 3. Sử Dụng Các Công Thức Liên Quan Đến Hình Nón 14. Bài 4. Xét Sự Đơn Điệu Dựa Vào Bảng Biến Thiên 23. Bài 5. Thể Tích Khối Lăng Trụ Đều 31. Bài 6. Giải Phương Trình -Bất Phương Trình Logarit 40. Bài 7. Sử Dụng Tính Chất Của Tích Phân 50. Bài 8. Cực Trị Hàm Số 61. Bài 9. Khảo Sát Hàm Số – Nhận Dạng Hàm Số, Đồ Thị 70. Bài 10. Sử Dụng Tính Chất Của Logarit 82. Bài 11. Tính Nguyên Hàm Bằng Cách Sử Dụng Tính Chất Của Nguyên Hàm 89. Bài 12. Khái Niệm Số Phức 97. Bài 13. Bài Toán Tìm Hình Chiếu Của Điểm Trên Mặt Phẳng Tọa Độ 104. Bài 14. Xác Định Tâm, Bán Kính, Diện Tích, Thể Tích Của Mặt Cầu 115. Bài 15. Xác Định Vectơ Pháp Tuyến Của Mặt Phẳng 124. Bài 16. Phương Trình Đường Thẳng 131. Bài 17. Xác Định Góc Giữa Hai Đường Thẳng, Đường Thẳng Và Mặt Phẳng, Hai Mặt Phẳng 141. Bài 18. Đếm Số Điểm Cực Trị Dựa Vào Bảng Biến Thiên 156. Bài 19. Tìm Giá Trị Lớn Nhất- Giá Trị Nhỏ Nhất Của Hàm Số Trên Một Đoạn 167. Bài 20. Biến Đổi Biểu Thức Lôgarit 176. Bài 21. Phương Trình, Bất Phương Trình Mũ Và Logarit 185. Bài 22. Khối Trụ 192. Bài 23. Liên Quan Giao Điểm Từ Hai Đồ Thị 203. Bài 24. Nguyên Hàm Cơ Bản 217. Bài 25. Toán Thực Tế Sử Dụng Hàm Mũ Và Lôgarit 226. Bài 26. Tính Thể Tích Khối Lăng Trụ Đứng 236. Bài 27. Tiệm Cận Của Đồ Thị Hàm Số 251. Bài 28. Tính Chất Đồ Thị – Hàm Số – Đạo Hàm 260. Bài 29. Ứng Dụng Tích Phân 271. Bài 30. Các Phép Toán Số Phức 285. Bài 31. Biểu Diễn Hình Học Của Số Phức 292. Bài 32. Tích Vô Hướng Của Hai Vectơ Trong Không Gian 299. Bài 33. Viết Phương Trình Mặt Cầu 305. Bài 34. Phương Trình Mặt Phẳng Liên Quan Đến Đường Thẳng 312. Bài 35. Tìm Véc-Tơ Chỉ Phương Của Đường Thẳng 322. Bài 36. Tính Xác Suất Của Biến Cố Bằng Định Nghĩa 331. Bài 37. Khoảng Cách Giữa Hai Đường Thẳng Chéo Nhau 349. Bài 38. Tích Phân Cơ Bản (A), Kết Hợp (B) 371. Bài 39. Tìm Tham Số Để Hàm Số Bậc 1 Trên Bậc 1 Đơn Điệu 395. Bài 40. Khối Nón 416. Bài 41. Lôgarit 435. Bài 42. Max, Min Của Hàm Trị Tuyệt Đối Có Chứa Tham Số 454. Bài 43. Phương Trình Logarit Có Chứa Tham Số 474. Bài 44. Nguyên Hàm Từng Phần 494. Bài 45. Liên Quan Đến Giao Điểm Của Hai Đồ Thị 513. Bài 46. Tìm Cực Trị Của Hàm Số Hợp Khi Biết Đồ Thị Hàm Số 545. Bài 47. Ứng Dụng Phương Pháp Hàm Số Giải Phương Trình Mũ Và Logarit 576. Bài 48. Tích Phân Liên Quan Đến Phương Trình Hàm Ẩn 602. Bài 49. Tính Thể Tích Khối Chóp Biết Góc Giữa Hai Mặt Phẳng 627. Bài 50. Tính Đơn Điệu Của Hàm Số Liên Kết 652.

Nguồn: toanmath.com

Đọc Sách

Tổng ôn toán vận dụng - vận dụng cao ôn thi THPTQG môn Toán - Lục Trí Tuyên
Tài liệu gồm 60 trang được biên soạn bởi thầy Lục Trí Tuyên tuyển tập 142 bài toán trắc nghiệm mức độ vận dụng và vận dụng cao ôn thi THPT Quốc gia môn Toán, trong đó gồm 35 bài toán thuộc chương trình Toán 11 và 107 bài toán nằm trong chương trình Toán 12, các bài toán đều có đáp án, được phân tích và giải chi tiết.
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 2 Hình học)
Tài liệu gồm 95 trang trình bày lý thuyết cần nhớ, phân dạng toán có hướng dẫn giải và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Hình học ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp, nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu : + Chuyên đề 5. Khối đa diện – Thể tích khối đa diện + Chuyên đề 6. Mặt nón – Mặt trụ và Mặt cầu + Chuyên đề 7. Phương pháp tọa độ trong không gian Oxyz [ads] Xem thêm : + Chuyên đề Toán 12 ôn thi THPTQG – Lư Sĩ Pháp (Tập 1: Giải tích) + Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)
Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp
Tổng hợp Toán vận dụng cao có lời giải chi tiết - Đoàn Trí Dũng
Tài liệu gồm 51 được biên soạn bởi thầy Đoàn Trí Dũng tổng hợp 160 bài toán vận dụng cao có lời giải chi tiết nhằm giúp học sinh ôn tập đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán, các bài toán thuộc nhiều chủ đề khác nhau được trích dẫn từ các đề thi thử môn Toán.