Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đăk Lăk

Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đăk Lăk Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk bao gồm 5 bài toán tự luận, có lời giải chi tiết. Dưới đây là một số bài toán trong đề: 1. Tính chiều dài và chiều rộng của một hình chữ nhật. Biết rằng nếu tăng cả chiều dài và chiều rộng lên 4cm thì ta được một hình chữ nhật có diện tích tăng thêm 80cm2 so với diện tích của hình chữ nhật ban đầu, còn nếu tăng chiều dài lên 5cm và giảm chiều rộng xuống 2cm thì ta được một hình chữ nhật có diện tích bằng diện tích của hình chữ nhật ban đầu. 2. Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K. Chi tiết phân tích các câu hỏi trong đề: 1) Chứng minh rằng tứ giác OMHQ nội tiếp 2) Chứng minh rằng góc OMH = góc OIP 3) Chứng minh rằng khi điểm M di chuyển trên đường thẳng d thì điểm I luôn cố định 4) Biết OH = R. căn (2), tính IP.IQ Đây là một đề thi đầy thách thức và đòi hỏi sự tư duy logic, khả năng phân tích và giải quyết vấn đề của thí sinh. Mong rằng các em sẽ tự tin và thành công khi tham gia kỳ thi tuyển sinh.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tiền Giang : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x2 và đường thẳng (d) : y = 2mx + 1, m là tham số. Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A , B sao cho OI = √10, với I là trung điểm của đoạn thẳng AB. + Cho phương trình bậc hai (x − a)(x − b) + (x − b)(x − c) + (x − c)(x − a) = 0 có nghiệm kép, trong đó x là ẩn số và a, b, c là các tham số. Chứng minh rằng a = b = c. + Cho x, y là các số thực thay đổi thỏa mãn điều kiện x2 + y2 + xy = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = x2 + y2 − xy.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Đồng Nai
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Trong mặt phẳng cho 1889 điểm thỏa mãn với 3 điểm bất kỳ tạo thành 3 đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh trong các điểm đã cho tồn tại 237 điểm cùng nằm bên trong hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1/2. + Có bao nhiêu cách bỏ 5 cây bút khác màu gồm xanh, đen, tím, đỏ, hồng vào 5 hộp đựng bút khác màu gồm xanh, đen, tím, đỏ, hồng sao cho mỗi hộp chỉ có một bút và màu bút khác với màu hộp? + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, biết AB < AC. Gọi L là giao điểm của đường thẳng BC với tiếp tuyến tại A của (O). Gọi K là giao điểm của hai đường thẳng BC và EF. Gọi M, N lần lượt là trung điểm của hai đoạn thẳng BC, EF. 1. Chứng minh tứ giác ALMO nội tiếp đường tròn. Gọi D là giao điểm của (O) với đường tròn ngoại tiếp tứ giác ALMO , D khác A . Chứng minh LD là tiếp tuyến của (O). 2. Chứng minh MH vuông góc với AK, suy ra KH vuông góc với AM. 3. Chứng minh rằng ba điểm A, N, D thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Cao Bằng
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x2 và đường thẳng (d) : y = 2 (m − 1) x − m2 + 3. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho: y1 + y2 − x1x2 − 33 = 0. + Tìm tất cả các số dương x để biểu thức Q = 3x/(x2 − x + 1) nhận giá trị là những số nguyên. + Tìm tất cả các số tự nhiên a có bốn chữ số thỏa mãn. Khi chia a cho 80 ta được số dư là 20 và khi chia a cho 41 ta được số dư là 11.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Long An
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Long An gồm có 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút; kỳ thi được diễn ra vào ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Long An : + Cho phương trình m (m2x − m − 2) = 8x + 4 với m là tham số và m khác 2. Tìm tất cả giá trị của m để phương trình trên có nghiệm nhỏ hơn −2. + Cho đa giác đều 24 cạnh A1A2 . . . .A23A24. Có tất cả bao nhiêu tam giác vuông nhưng không phải là tam giác vuông cân được tạo thành từ các đỉnh của đa giác trên? + Cho ∆ABC nhọn có AB < AC. Gọi O, H, G lần lượt là tâm đường tròn ngoại tiếp, trực tâm, trọng tâm của tam giác trên. Gọi E là điểm tùy sao cho luôn tạo thành ∆EHG và ∆EOG. Chứng minh: tỉ số diện tích ∆EHGvà diện tích ∆EOGkhông phụ thuộc vào vị trí của điểm E.