Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2021 - 2022 phòng GDĐT Hai Bà Trưng - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát Toán 9 năm 2021 – 2022 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một xưởng sản xuất phải làm xong 40000 lá cờ cho các cổ động viên trong một số ngày quy định để chuẩn bị cho trận Chung kết bóng đá Nam SEA Games 31. Thực tế, mỗi ngày xưởng đó đã làm được nhiều hơn 200 lá cờ so với kế hoạch. Vì thế xưởng sản xuất đã hoàn thành công việc sớm trước 10 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng sản xuất phải làm bao nhiêu lá cờ? (Giả định rằng số lá cờ mà xưởng sản xuất đó làm mỗi ngày là bằng nhau). + Một hình nón có đường kính 42 cm và chiều cao của nón bằng 20 cm. Tính diện tích xung quanh của hình nón đó (lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = mx + 1 và parabol (P): y = x2. Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B. Với A(x1;y1) và B(x2;y2) tính giá trị biểu thứcT = x1x2 + y1y2.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2020 - 2021 trường Hoàng Hoa Thám - Hà Nội
Đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.
Đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am - Hà Nội
Đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am – Hà Nội được biên soạn theo hình thức đề tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am – Hà Nội : + Giải bài toán bằng cách lập phương trình: Hưởng ứng phong trào trồng cây xanh vì môi trường xanh sạch đẹp, một chi đoàn thanh niên dự định trồng 400 cây xanh trong một thời gian quy định. Mỗi ngày chi đoàn đã trồng vượt mức kế hoạch 10 cây. Do vậy chi đoàn đã hoàn thành công việc sớm hơn thời gian quy định 2 ngày. Hỏi theo kế hoạch mỗi ngày chi đoàn phải trồng bao nhiêu cây? + Người ta muốn xây dựng một cây cầu bắc qua một hồ nước hình tròn có bán kính 2 km (hình vẽ bên). Hãy tính chiều dài cây cầu để khoảng cách từ cây cầu đến khoảng tâm của hồ nước là 1732m (kết quả làm tròn đến chữ số hàng đơn vị). + Cho đường thẳng d: y = (m + 2)x + m với m khác 2. 1) Tìm m để đường thẳng d đi qua M(1;0). 2) Vẽ đồ thị hàm số d với m tìm được ở câu 1. 3) Tìm m để đường thẳng d cắt Ox, Oy tại điểm A và điểm B sao cho diện tích tam giác OAB bằng 1/2.