Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kỳ 2 Toán 8 năm 2020 - 2021 sở GDĐT Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kỳ 2 Toán 8 năm học 2020 – 2021 sở GD&ĐT tỉnh Bắc Ninh; đề thi được biên soạn theo hình thức đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 12 câu, chiếm 03 điểm, phần tự luận gồm 04 câu, chiếm 07 điểm, thời gian làm bài 90 phút; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kỳ 2 Toán 8 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Bạn An mua 15 quyển vở gồm hai loại: loại I giá 7500 đồng một quyển, loại II giá 5000 đồng một quyển. Tổng số tiền An phải trả cho 15 quyển vở là 87500 đồng. Hỏi An mua mỗi loại mấy quyển vở? + Cho hình chữ nhật ABCD. Kẻ AH vuông góc với BD tại H. Trên các đoạn AH, DH, BC lần lượt lấy các điểm M, N, K sao cho HM HN BK HA HD BC. Chứng minh rằng: a) MN song song với AD. b) Tứ giác MNKB là hình bình hành. + Trong các phương trình sau, phương trình nào là phương trình bậc nhất?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa kỳ 2 Toán 8 năm 2018 2019 trường chuyên Hà Nội Amsterdam
THCS. giới thiệu đến bạn đọc đề kiểm tra giữa kỳ 2 Toán 8 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam, kỳ thi nhằm đánh giá chất lượng học tập môn Toán của học sinh lớp 8 sau từng giai đoạn cụ thể, để kiểm tra sự tiến bộ của các em, đồng thời có cơ sở để thực hiện quá trình dạy và học ở giai đoạn tiếp theo được tốt hơn. Đề kiểm tra giữa kỳ 2 Toán 8 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam gồm 04 bài toán tự luận, đề thi có sự phân ban giữa lớp 8A với các lớp 8B, 8C, 8D, 8E. Trích dẫn đề kiểm tra giữa kỳ 2 Toán 8 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập phương trình: Một ô tô phải đi quãng đường AB dài 120 km trong thời gian nhất định. Ô tô đi nửa quãng đường đầu với vận tốc lớn hơn dự định là 5 km/h và đi nửa quãng đường sau với vận tốc kém dự định là 4 km/h. Biết ô tô đến B đúng thời gian dự định. Tính thời gian ô tô dự định đi quãng đường AB. [ads] + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. Gọi M và N lần lượt là hình chiếu vuông góc của D trên AC và CF. a) Chứng minh rằng: CF.CM = CE.CN. b) Gọi Q là hình chiếu vuông góc của D trên AB. Chứng minh rằng: QM // EF. c) Gọi P là hình chiếu vuông góc của D trên BE. Chứng minh rằng: bốn điểm M, N, P, Q thẳng hàng. + Cho các số thực không âm a, b, c thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: P = (ab + bc + ca – abc)/(a + 2b + c).