Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng một số phương trình lượng giác thường gặp

Tài liệu gồm 36 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề một số phương trình lượng giác thường gặp, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1: Hàm Số Lượng Giác Và Phương Trình Lượng Giác. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nhận biết được các dạng phương trình lượng giác thường gặp và cách giải. Kĩ năng: + Biết áp dụng công thức nghiệm đối với từng phương trình lượng giác cơ bản. + Vận dụng phương pháp giải phương trình phù hợp vào từng trường hợp. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Phương trình lượng giác thuần nhất. + Dạng 2: Phương trình bậc hai của một hàm số lượng giác. + Dạng 3: Phương trình lượng giác đẳng cấp. + Dạng 4: Phương trình lượng giác đối xứng. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.

Nguồn: toanmath.com

Đọc Sách

Phân dạng và giải chi tiết 99 câu trắc nghiệm chuyên đề lượng giác - Nguyễn Nhanh Tiến
Tài liêu gồm 24 trang phân dạng và giải chi tiết 99 bài toán trắc nghiệm chọn lọc chủ đề hàm số lượng giác và phương trình lượng giác chương trình Đại số và Giải tích 11. Các dạng toán trong tài liệu gồm có: 1. Tập xác định của hàm số lượng giác • y = f(x)/g(x) có nghĩa khi và chỉ khi g(x) ≠ 0 • y = √f(x) có nghĩa khi và chỉ khi f(x) ≥ 0 • y = f(x)/√g(x) có nghĩa khi và chỉ khi g(x) > 0 2. GTLN và GTNN Của Hàm Số Lượng Giác • −1 ≤ sinx ≤ 1; 0 ≤ (sinx)^2 ≤ 1 • −1 ≤ cos x ≤ 1; 0 ≤ (cosx)^2 ≤ 1 • |tanx+cot x| ≥ 2 • Hàm số dạng y = a(sinx)^2 + bsinx + c (tương tự cosx, tanx …) tìm max min theo hàm bậc 2 (lập bảng biến thiên) • Dùng phương trình asinx + bcosx = c có nghiệm x ∈ R khi và chỉ khi a^2 + b^2 ≥ c^2 • Với hàm số y = asinx + bcosx ta có kết quả: ymax = √(a^2 + b^2), ymin = −√(a^2 + b^2) • Hàm số có dạng: y = (a1.sinx + b1.cosx + c1)/(a2.sinx + b2.cos x + c2) ta tìm tập xác định. Đưa về phương trình dạng: asinx + bcosx = c [ads] 3. Tính chẵn lẻ Của Hàm Số Lượng Giác Để xác định tính chẵn lẻ của hàm số lượng giác ta thực hiện theo sau: + Bước 1: Tìm tập xác định D của hàm số, khi đó: • Nếu D là tập đối xứng (Tức ∀x ∈ D ⇒ −x ∈ D), ta thực hiện tiếp bước 2 • Nếu D không là tập đối xứng (Tức ∃x ∈ D mà −x ∈/ D), ta kết luận hàm số không chẵn không lẻ + Bước 2: Xác định f(−x) khi đó: • Nếu f(−x) = f(x) kết luận là hàm số chẵn • Nếu f(−x) = −f(x) kết luận là hàm số lẻ • Ngoài ra kết luận là hàm số không chẵn cũng không lẻ 4. Tính Tuần Hoàn Của Hàm Số Lượng Giác • Hàm số y = sin(ax + b) và y = cos(ax + b) với a ≠ 0 tuần hoàn với chu kì: 2π/|a| • Hàm số y = tan(ax + b) và y = cot(ax + b) với a 6= 0 tuần hoàn với chu kì: π/|a| • Hàm số f(x), g(x) tuần hoàn trên tập D có các chu kì lần lượt a và b với a, b ∈ Q. Khi đó F(x) = f(x) + g(x), G(x) = f(x)g(x) cũng tuần hoàn trên D • Hàm số F(x) = m. f(x) + n.g(x) tuần hoàn với chu kì T là BCNN của a,b 5. Phương Trình Lượng Giác Cơ Bản u, v là các biểu thức của x, x là số đo của góc lượng giác: • sinu = sinv ⇔ u = v + 2kπ hoặc x = π − v + k2π • cosu = cos v ⇔ u = ±v + k2π • tanu = tanv ⇔ u = v + kπ • cotu = cot v ⇔ u = v + kπ• Muốn tìm số điểm (vị trí) biểu diễn của x lên đường tròn lượng giác thì ta đưa về dạng x = α +k2π/n. Kết luận số điểm là n, với k, l ∈ Z
Chuyên đề trắc nghiệm hàm số lượng giác và phương trình lượng giác - Nguyễn Đại Dương
Tài liệu gồm 24 với nội dung gồm: + Tóm tắt lý thuyết, công thức lượng giác và cách giải các phương trình lượng giác cơ bản + 129 bài tập trắc nghiệm hàm số và phương trình lượng giác + 5 bài tập tự luận phương trình lượng giác
50 câu trắc nghiệm chuyên đề Lượng giác - Bùi Thế Việt
50 câu trắc nghiệm chuyên đề Lượng giác – Bùi Thế Việt
Phương trình lượng giác trong đề thi Đại học - Huỳnh Đức Khánh
Các nội dung chính của tài liệu: + Phần 1: Các công thức cơ bản + Phần 2: Các công thức liên hệ + Phần 3: 5 Dạng phương trình lượng giác cơ bản + Phần 4: Một vài thủ thuật + Phần 5: Đề thi Đại học 2002 → 2012 + Phần 6: 100 Đề thi thử trên toàn quốc