Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Trãi - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Trãi, quận Hà Đông, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội : + Cho ∆ ABC vuông tại A (AB > AC). Gọi O là trung điểm BC. Lấy D đối xứng với A qua O. a) Chứng minh. Tứ giác ABDC là hình chữ nhật b) Cho AC = 6cm; AD = 10cm. Tính diện tích tứ giác ABDC c) Lấy E đối xứng với D qua BC. Từ E kẻ đường thẳng vuông góc với AB đường này cắt BC tại F. Chứng minh EFDB là hình thoi d) Chứng minh CE vuông góc với EB. + Cho biểu thức 2 2 5 1 3 2 3 6 2 x A x x x x x và 7 2 B x với 2 x a) Tính giá trị của biểu thức B khi 2 x 4 0 b) Rút gọn A c) Tìm x nguyên để biểu thức P A B có giá trị nguyên. + Cho a b c là các số dương thỏa mãn 3 3 3 a b c abc 3. Hãy tính giá trị của biểu thức 2020 2020 2020 2020 2020 2020.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 8 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 06 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 8 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra học kỳ 1 Toán 8 : Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm M bất kì. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M xuống các cạnh AB và AC. a) Tứ giác ADME là hình gì? vì sao? b) Điểm M ở vị trí nào trên cạnh BC để tứ giác ADME là hình vuông? c) Gọi I là trung điểm đoạn thẳng BM và K là trung điểm đoạn thẳng CM và tứ giác DEKI là hình bình hành. Chứng minh rằng DE là đường trung bình tam giác ABC. Giải: a) Xét tứ giác ADME có: Góc DAE = 90 độ (vì tam giác ABC vuông tại A) Góc ADM = 90 độ (Vì MD ⊥ AB tại D) Góc AEM = 90 độ (Vì ME ⊥ AC tại E) Suy ra tứ giác ADME là hình chữ nhật. b) Để tứ giác ADME là hình vuông thì hình chữ nhật ADME có AM là tia phân giác của góc DAE, suy ra điểm M là giao điểm của đường phân giác góc BAC với cạnh BC của tam giác ABC. [ads] c) Theo giả thiết tứ giác DEKI là hình bình hành nên DI = EK, mà DI = 1/2.BM, EK = 1/2.CM (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, áp dụng vào tam giác BDM vuông tại D, tam giác CEM vuông tại E) Do đó: BM = CM ⇒ M là trung điểm của BC (1) Lại có MD ⊥ AB và AC ⊥ AB nên MD // AC (2) Từ (1) và (2) suy ra D là trung điểm cạnh AB (*) Chứng minh tương tự ta có E là trung điểm cạnh AC (**) Từ (*) và (**) suy ra DE là đường trung bình tam giác ABC. (đpcm)
Đề khảo sát chất lượng học kỳ 1 Toán 8 năm học 2017 - 2018 phòng GD và ĐT Bảo Thắng - Lào Cai
Đề khảo sát chất lượng học kỳ 1 Toán 8 năm học 2017 – 2018 phòng GD và ĐT Bảo Thắng – Lào Cai gồm 7 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 8 : + Một mảnh vườn lúc đầu có dạng tam giác ABC vuông tại A, bờ rào AB dài 5m, rào AC dài 12m. Người ta sử dụng lưới ngăn dọc theo hai điểm E; M. (E là trung điểm của AC và M là trung điểm của BC) để chia mảnh vườn thành hai phần trồng rau và hoa. a) Tính độ dài của lưới ME phải dùng b) Mảnh vườn AEMB là hình gì? Vì sao? c) Tính diện tích phần vườn ECM? [ads] + Hình bình hành là: A. Tứ giác có hai cạnh đối bằng nhau B. Tứ giác có các cặp cạch đối bằng nhau C. Tứ giác có các cặp cạnh đối song song D. Hình thang có hai đường chéo bằng nhau + Hình nào sau đây không có tâm đối xứng? A. Hình bình hành B. Hình thang cân C. Hình chữ nhật D.Cả ba hình trên