Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp trường Toán 11 năm 2023 - 2024 trường THPT Diễn Châu 3 - Nghệ An

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Diễn Châu 3, tỉnh Nghệ An. Đề thi được biên soạn theo cấu trúc định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Phần 1. Câu trắc nghiệm nhiều phương án lựa chọn, gồm 12 câu tổng 3 điểm; Phần 2. Câu trắc nghiệm đúng sai, gồm 4 câu tổng 4 điểm; Phần 3. Câu trả lời ngắn, gồm 2 câu tổng 1 điểm. Trích dẫn Đề HSG cấp trường Toán 11 năm 2023 – 2024 trường THPT Diễn Châu 3 – Nghệ An : + Kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp đáy là hình vuông cạnh bằng 180m và các cạnh bên bằng nhau (Mô hình hóa kim tự tháp bằng hình chóp S.ABCD như hình vẽ dưới đây với O là tâm của đáy). Biết SO m 98. Tính số đo góc phẳng nhị diện. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD AM 3. Gọi G N theo thứ tự là trọng tâm các tam giác SAB ABC. a) Giao tuyến của hai mặt phẳng SAB và SCD là đường thẳng đi qua S và song song với AC b) 3 DN 2 DB c) MN song song với mặt phẳng SCD d) NG cắt với mặt phẳng. + Phỏng vấn 30 học sinh lớp 11A2 về môn thể thao yêu thích thu được kết quả có 15 bạn thích môn Bóng đá, 10 bạn thích môn Bóng bàn và 5 bạn thích cả hai môn đó. Chọn ngẫu nhiên hai học sinh của lớp 11A2. a) Xác suất chọn được hai bạn thích đá bóng là 7 29 b) Xác suất chọn được hai bạn thích cả hai môn thể thao là 2 87 c) Xác suất chọn được hai bạn mà mỗi bạn thích ít nhất một môn là 20 29 d) Xác suất chọn được hai bạn trong đó ít nhất một bạn thích đá bóng là 12 29.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 11 cấp trường năm 2017 - 2018 trường Lê Văn Thịnh - Bắc Ninh
Đề thi chọn HSG Toán 11 cấp trường năm 2017 – 2018 trường Lê Văn Thịnh – Bắc Ninh gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức vào ngày 7/4/2018 nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11 để rèn luyện, bồi dưỡng thêm, hướng đến các kỳ thi học sinh giỏi Toán cấp cao hơn, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 11 cấp trường : + Cho đa giác lồi n cạnh nội tiếp đường tròn, biết số tam giác lập được bằng 4/7 số tứ giác lập được từ n đỉnh của đa giác đó. Tìm hệ số của x^4 trong khai triển (3 + 2x)^n. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AD // BC), BC = 2a, AB = AD = DC = a (a > 0). Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc với AC. [ads] a) Chứng minh mặt phẳng (SBC) vuông góc mặt phẳng (ABCD). Tính độ dài đoạn thẳng SD. b) Mặt phẳng (α) đi qua điểm M thuộc đoạn thẳng OD (M khác O và D) và song song với đường thẳng SD và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (α) biết MD = x. Tìm x để diện tích thiết diện lớn nhất.
Đề thi chọn HSG tỉnh Toán 11 năm học 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 11 năm học 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 01 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề được dành cho học sinh lớp 10 và 11 khối THPT, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 11 sở Hà Tĩnh 2017 – 2018 : + Năm 2018 là năm kỷ niệm 50 năm Chiến thắng Đồng Lộc (24/7/1968-24/7/2018), trường học X cho học sinh trong các đội tuyển học sinh giỏi Toán khối 10, khối 11 của trường về tham quan khu di tích Ngã ba Đồng lộc. Biết rằng đội tuyển Toán khối 10 có 4 em gồm 2 nam, 2 nữ; đội tuyển Toán khối 11 có 4 em gồm 3 nam, 1 nữ. Trong đợt tham quan thứ nhất, trường chọn 3 học sinh với yêu cầu có cả đội tuyển 10, cả đội tuyển 11; có cả nam và cả nữ. Hỏi có bao nhiêu cách chọn. [ads] + Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, H là trung điểm của AB, SH ⊥ (ABC), SH = x. Gọi M là hình chiếu vuông góc của H lên đường thẳng AC và N là điểm thỏa mãn vtMH = vtHN. a) Khi x = a√3/2, chứng minh đường thẳng SN vuông góc với mặt phẳng (SAC). b) Tìm x theo a để góc giữa đường thẳng SB và mặt phẳng (SAC) bằng 45 độ.
Đề thi chọn HSG tỉnh Toán 11 năm 2017 2018 sở GDĐT Quảng Bình
Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán 11 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán 11 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán 11 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Một hộp đựng chín quả cầu được đánh số từ 1 đến 9. Hỏi phải lấy ra ít nhất bao nhiêu quả cầu để xác suất có ít nhất một quả cầu ghi số chia hết cho 4 phải lớn hơn 5/6. [ads] + Tìm tất cả các số nguyên dương n sao cho 3^2n + 3n^2 + 7 là một số chính phương. + Cho hình hộp ABCD.A’B’C’D’. Gọi G là trọng tâm của tam giác BC’D. a. Xác định thiết diện của hình hộp ABCD.A’B’C’D’ khi cắt bởi mặt phẳng (ABG). Thiết diện đó là hình gì? b. Hai điểm M, N lần lượt thuộc hai đoạn thẳng AD, A’C sao cho MN song song với mặt phẳng (BC’D), biết AM = 1/4.AD. Tính tỉ số CN/CA’.
Đề thi chọn HSG tỉnh Toán 11 THPT năm 2017 - 2018 sở GD và ĐT Nghệ An (Bảng A)
Đề thi chọn HSG tỉnh Toán 11 THPT năm 2017 – 2018 sở GD và ĐT Nghệ An (Bảng A) gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào chiều ngày 16 tháng 03 năm 2018, đề thi HSG Toán 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 11 THPT : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Hình chiếu vuông góc của điểm D lên các đường thẳng AB, BC lần lượt là M(-2; 2), N(2; -2); đường thẳng BD có phương trình 3x – 5y + 1 = 0. Tìm tọa độ điểm A. + Một hộp chứa 17 quả cầu đánh số từ 1 đến 17. Lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất sao cho tổng các số ghi trên 3 quả cầu đó là một số chẵn. [ads] + Cho hình chóp S.ABCD, có đáy là hình thoi cạnh a, SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính góc giữa đường thẳng SB và mặt phẳng (ABCD), biết rằng x = a. b) Tìm x theo a để tích AC.SD đạt giá trị lớn nhất.