Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giới hạn dãy số, giới hạn hàm số và hàm số liên tục

Tài liệu gồm 58 trang bao gồm lý thuyết SGK, phân dạng toán và bài tập rèn luyện các chủ đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục trong chương trình Đại số và Giải tích 11 chương 4. GIỚI HẠN CỦA DÃY SỐ I. Lý thuyết giới hạn của dãy số  1. Dãy số có giới hạn 0 2. Dãy số có giới hạn hữu hạn 3. Dãy số có giới hạn vô cực II. Các dạng toán về giới hạn của dãy số Dạng 1. Tính giới hạn dãy số cho bởi công thức Dạng 2. Tính giới hạn của dãy số cho bởi hệ thức truy hồi Dạng 3. Tổng của cấp số nhân lùi vô hạn Dạng 4. Tìm giới hạn của dãy số mà tổng là n số hạng đầu tiên của một dãy số khác III. Bài tập rèn luyện kỹ năng Dạng 1. Bài tập lý thuyết Dạng 2. Bài tập tính giới hạn dãy số cho bởi công thức Dạng 3. Tổng của cấp số nhân lùi vô hạn Dạng 4. Tìm giới hạn của dãy số cho bởi hệ thức truy hồi Dạng 5. Tìm giới hạn của dãy số có chứa tham số Dạng 6. Tìm giới hạn của dãy số mà số hạng tổng quát là tổng của n số hạng đầu tiên của một dãy số khác [ads] GIỚI HẠN CỦA HÀM SỐ I. Lý thuyết giới hạn của hàm số 1. Định nghĩa giới hạn của hàm số tại một điểm 2. Định nghĩa giới hạn của hàm số tại vô cực 3. Một số giới hạn đặc biệt 4. Định lí về giới hạn hữu hạn 5. Quy tắc về giới hạn vô cực 6. Các dạng vô định II. Các dạng toán về giới hạn của hàm số Dạng 1. Tìm giới hạn xác định bằng cách sử dụng trực tiếp các định nghĩa, định lí và quy tắc Dạng 2. Tìm giới hạn vô định dạng 0/0 Dạng 3. Giới hạn vô định dạng ∞/∞ Dạng 4. Giới hạn vô định dạng 0.∞ Dạng 5. Dạng vô định ∞ – ∞ III. Bài tập rèn luyện kỹ năng HÀM SỐ LIÊN TỤC I. Lý thuyết hàm số liên tục II. Các dạng toán về hàm số liên tục Dạng 1. Xét tính liên tục của hàm số Dạng 2. Chứng minh phương trình có nghiệm III. Bài tập rèn luyện kỹ năng

Nguồn: toanmath.com

Đọc Sách

Các bài toán về giới hạn trong đề thi Olympic Toán 11
LỜI GIỚI THIỆU Kính chào Quý Thầy Cô cùng các bạn học sinh thân mến! Trong quá trình ôn tập để chuẩn bị cho những kì thi học sinh giỏi, em cùng với Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đã vô cùng thích thú với Chuyên đề “Giới hạn”. Nhằm để củng cố kiến thức, qua sưu tầm, tìm tòi và học hỏi, chúng em đã tổng hợp được một số dạng toán trong các đề thi Olympic tháng 4, Kì thi tuyển chọn học sinh giỏi … và phát triển thêm một số bài tập hay và khó. Chúng em hy vọng tài liệu nhỏ này có thể giúp Quý Thầy Cô và các bạn học sinh tham khảo, mở rộng thêm nhiều dạng bài tập mới, cũng như sẽ giúp ích cho các bạn học sinh, các anh chị ôn tập để chuẩn bị cho những kì thi sắp tới! Khi tổng hợp và biên soạn, chúng em xin chân thành cảm ơn đến Thầy Nguyễn Minh Thành đã góp ý về mặt ý tưởng cũng như hỗ trợ về mặt công nghệ thông tin để giúp chúng em hoàn thiện tài liệu này. Ngoài ra, xin gửi lời cảm ơn đến những bạn sau: 1 Bạn Tăng Phồn Thịnh, Lớp 11A1, Niên khóa 2019 – 2022. 2 Bạn Huỳnh Trần Nhật Quang, Lớp 11T1, Niên khóa 2019 – 2022. 3 Bạn Nguyễn Phạm Nhật Minh, Lớp 11T2, Niên khóa 2019 – 2022. 4 Bạn Lý Nguyễn, Lớp 11T2, Niên khóa 2019 – 2022. 5 Bạn Nguyễn Đức Lộc, Lớp 11T1, Niên khóa 2019 – 2022. 6 Bạn Nguyễn Minh Khoa, Lớp 11A2, Niên khóa 2019 – 2022. Cùng các bạn là thành viên của Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đã cùng tham gia, đóng góp để tài liệu thêm hoàn thiện và chỉnh chu hơn. Đây là dự án ebook đầu tiên của chúng em, dù đã cố gắng nhưng vẫn không thể tránh những sai sót, chúng em rất mong nhận được những phản hồi, góp ý từ Quý Thầy Cô và các bạn học sinh. Kính chúc Quý Thầy Cô và các bạn học một năm mới thành công và hạnh phúc. Đặc biệt, chúc các bạn trong Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đạt kết quả thật cao trong những kỳ thi sắp tới. Em xin trân trọng kính chào! Mỹ Tho, ngày 18 tháng 02 năm 2021. Nguyễn Thị Anh Thư, Lớp 11T3, Niên khóa 2019 – 2022.
Trắc nghiệm giới hạn có giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 80 trang tổng hợp các câu hỏi và bài toán trắc nghiệm giới hạn có lời giải chi tiết trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm giới hạn có giải chi tiết trong các đề thi thử Toán 2018 : + (THPT Thạch Thành 2 – Thanh Hóa – lần 1 năm 2017 – 2018) Phát biểu nào trong các phát biểu sau là đúng? A. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm -x0. B. Nếu hàm số y = f(x) có đạo hàm trái tại x0 thì nó liên tục tại điểm đó. C. Nếu hàm số y = f(x) có đạo hàm phải tại x0 thì nó liên tục tại điểm đó. D. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó. [ads] + (SGD Ninh Bình năm 2017 – 2018) Trong các giới hạn hữu hạn sau, giới hạn nào có giá trị khác với các giới hạn còn lại? + (THPT Quãng Xương 1 – Thanh Hóa năm 2017 – 2018) Cho hàm số f(x) xác định trên khoảng K chứa a. Hàm số f(x) liên tục tại x = a nếu?
Một số vấn đề cơ bản về giới hạn của dãy số - Nguyễn Hữu Hiếu
Tài liệu gồm 20 trang được biên soạn bởi thầy Nguyễn Hữu Hiếu trình bày một số vấn đề cơ bản về giới hạn của dãy số, bao gồm các định nghĩa, định lý, các dạng toán và bài tập có hướng dẫn giải.