Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán - Lư Sĩ Pháp (Tập 1)

giới thiệu đến các em tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán (Tập 1) do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 158 trang tổng hợp các dạng toán và bài tập các chuyên đề thuộc chương trình Giải tích 12. Chuyên đề 1 . Ứng dụng của đạo hàm – Khảo sát và vẽ đồ thị hàm số – Bài toán liên quan (Trang 01 – 39) + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho. + Dạng 2. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó. + Dạng 3. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (a;b). + Dạng 4. Tìm các điểm cực trị của hàm số y = f(x). + Dạng 5. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0. + Dạng 6. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán. + Dạng 7. Tìm GTLN – GTNN của hàm số trên đoạn [a;b]. Xét hàm số y = f(x). + Dạng 8. Tìm GTLN – GTNN của hàm số chứa căn thức. + Dạng 9. Tìm GTLN – GTNN của hàm số trên một khoảng (a;b). + Dạng 10. Ứng dụng vào bài toán thực tế. + Dạng 11. Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên. + Dạng 12. Tìm các đường tiệm cận của hàm số nhất biến. + Dạng 13. Tìm các đường tiệm đứng của hàm số khác. + Dạng 14. Khảo sát sự biến thiên và vẽ đồ thị hàm số. + Dạng 15. Biện luận số giao điểm của hai đồ thị. + Dạng 16. Biện luận số nghiệm của phương trình bằng đồ thị. + Dạng 17. Viết phương trình tiếp tuyến. + Dạng 18. Sự tiếp xúc của các đường cong. [ads] Chuyên đề 2 . Lũy thừa – Mũ – Lôgarit. Phương trình, bất phương trình Mũ – Lôgarit và các bài toán ứng dụng thực tế (Trang 40 – 77) + Dạng 1. Xét tính đúng sai của một mệnh đề. + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit. + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước. + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit. + Dạng 5. Tập xác định của hàm số. + Dạng 6. Tính đạo hàm. + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình. + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế. Chuyên đề 3 . Nguyên hàm – Tích phân – Ứng dụng của tích phân trong hình học (Trang 78 – 124) + Dạng 1. Nguyên hàm và các phương pháp tìm nguyên hàm. + Dạng 2. Tích phân và các phương pháp tính tích phân. + Dạng 3. Ứng dụng của tích phân trong hình học. Chuyên đề 4 . Số phức (Trang 125 – 154) + Dạng 1. Số phức và các phép toán trên số phức. + Dạng 2. Phương trình bậc hai. + Dạng 3. Cực trị số phức. + Dạng 4. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Ở mỗi chuyên đề, nội dung tài liệu được chia thành 2 phần: + Phần 1 . Phần lý thuyết: Ở phần này thầy Lư Sĩ Pháp trình bày đầy đủ lý thuyết cần nắm cho mỗi chuyên đề và các dạng toán cần nắm. + Phần 2 . Phần trắc nghiệm: Bài tập trắc nghiệm có đáp án theo các chuyên đề, đa dạng, phong phú và bám sát cấu trúc đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Nội dung của cuốn tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán – Lư Sĩ Pháp (Tập 1) bám sát chương trình chuẩn và chương trình nâng cao môn Giải tích 12 đã được Bộ Giáo dục và Đào tạo quy định.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 2017 môn Toán Đoàn Quỳnh
Nội dung Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 2017 môn Toán Đoàn Quỳnh Bản PDF - Nội dung bài viết Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016-2017 môn Toán Đoàn Quỳnh Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016-2017 môn Toán Đoàn Quỳnh Sách ôn tập này bao gồm 246 trang và được chia thành 2 phần chính: Phần 1: Ôn tập theo chủ đề: Phần này tập trung vào việc ôn lại những kiến thức cơ bản, kỹ năng quan trọng cần thiết cho kỳ thi THPT Quốc gia môn Toán. Ngoài ra, sách cũng cung cấp một số câu hỏi trắc nghiệm theo 7 chủ đề chương trình Toán lớp 12. Điều này giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải các bài toán một cách hiệu quả. Phần 2: Một số đề tự luyện: Phần này cung cấp 9 đề thi tự luyện, được biên soạn theo đề minh họa của Bộ Giáo dục và Đào tạo đã được công bố. Đây là cơ hội tuyệt vời để học sinh tự kiểm tra năng lực và chuẩn bị tốt nhất cho kỳ thi sắp tới. Sách được xuất bản bởi Nhà xuất bản Giáo dục Việt Nam, đảm bảo chất lượng và tính chính xác trong từng bài học. Đây sẽ là nguồn tư liệu hữu ích không chỉ cho học sinh mà còn cho giáo viên và các bậc phụ huynh quan tâm đến việc chuẩn bị cho kỳ thi quan trọng này.
Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu
Nội dung Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu Bản PDF - Nội dung bài viết Giới thiệu sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" Giới thiệu sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" Sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" là một tài liệu giáo trình toán học cung cấp kiến thức chi tiết và cụ thể về 11 chuyên đề quan trọng trong môn Toán. Với tổng cộng 449 trang, sách bao gồm các chuyên đề sau: + Chuyên đề 1: Ứng dụng đạo hàm + Chuyên đề 2: Hàm số lũy thừa, mũ và logarit + Chuyên đề 3: Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4: Số phức + Chuyên đề 5: Hình học không gian + Chuyên đề 6: Phương pháp tọa độ trong không gian + Chuyên đề 7: Lượng giác + Chuyên đề 8: Đại số tổ hợp và xác suất + Chuyên đề 9: Giới hạn, liên tục + Chuyên đề 10: Hình học Oxy + Chuyên đề 11: Phương trình, bất phương trình đại số Đây là nguồn tư liệu hữu ích để học sinh, sinh viên củng cố kiến thức Toán một cách hiệu quả, giúp họ nắm vững và áp dụng các kiến thức lý thuyết vào thực hành trắc nghiệm. Nội dung sách được biên soạn một cách dễ hiểu, giúp người đọc tiếp cận môn học một cách tự tin và hiệu quả.
131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài
Nội dung 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Bản PDF - Nội dung bài viết Bảng 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Bảng 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Trong tài liệu này, bạn sẽ được giải quyết 131 bài toán thực tế phổ biến do thầy Trần Văn Tài biên soạn. Mỗi bài toán đều được giải chi tiết để giúp bạn hiểu rõ hơn về cách giải quyết. 1. Bài toán về việc kéo đường dây điện từ trạm phát đến Con Đảo, với chi phí cụ thể cho việc đặt dây dưới nước và trên bờ. Bạn sẽ được yêu cầu tìm điểm G cách A bao nhiêu để chi phí là ít nhất. 2. Bài toán về việc cắt tấm nhôm thành hình thang để có diện tích nhỏ nhất. Bạn cần tìm tổng x + y để đạt được điều đó. 3. Bài toán liên quan đến việc chọn chiếc hộp và mạ vàng để tặng vợ vào ngày phụ nữ Việt Nam. Bạn sẽ phải tính toán chiều cao và cạnh đáy của chiếc hộp để lượng vàng là nhỏ nhất. Thông qua việc giải quyết những bài toán này, bạn sẽ được rèn luyện kỹ năng tư duy logic và giải quyết vấn đề một cách chính xác và logic. Ngoài ra, nội dung của tài liệu cũng giúp bạn áp dụng kiến thức toán học vào thực tế một cách hiệu quả.
87 bài toán thực tế có lời giải chi tiết Nguyễn Tiến Minh
Nội dung 87 bài toán thực tế có lời giải chi tiết Nguyễn Tiến Minh Bản PDF - Nội dung bài viết 87 bài toán thực tế có lời giải chi tiết Nguyễn Tiến Minh 87 bài toán thực tế có lời giải chi tiết Nguyễn Tiến Minh Trong tài liệu này, Nguyễn Tiến Minh cung cấp 87 bài toán thực tế cùng với lời giải chi tiết, giúp bạn hiểu rõ về cách giải quyết các vấn đề trong thực tế. 1. Bài toán về vay tiền ngân hàng: Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ sau 3 tháng kể từ ngày vay. Số tiền mà ông A phải trả cho ngân hàng theo cách đó được tính như sau: - Ông A bắt đầu hoàn nợ sau 1 tháng kể từ ngày vay, và hoàn nợ hai lần liên tiếp cách nhau 1 tháng. - Tính số tiền mà ông A phải trả cho ngân hàng theo cách đó. 2. Bài toán về tiêu thụ dầu: Trữ lượng dầu của nước A sẽ hết sau 100 năm nếu tiêu thụ không tăng. Với mức tăng tiêu thụ 4% mỗi năm, ta cần tính sau bao nhiêu năm trữ lượng dầu của nước A sẽ hết. 3. Bài toán về dân số: Dân số Việt Nam năm 2001 là 78.685.800 người, và tỉ lệ tăng dân số là 1,7%. Sử dụng công thức dân số, ta cần tìm năm mà dân số nước ta đạt mức 120 triệu người khi tăng dân số theo tỉ lệ đã cho. Đây là chỉ một số bài toán trong tài liệu mà Nguyễn Tiến Minh cung cấp, giúp bạn rèn luyện kỹ năng giải quyết vấn đề trong thực tế một cách hiệu quả.