Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai

Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp tỉnh năm học 2022 – 2023 do sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức. Kỳ thi diễn ra vào ngày 14 tháng 02 năm 2023, bao gồm đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề: Cho hàm số \(y = mx^2 + 8\), có đồ thị là đường thẳng \(d\). Tìm tất cả các giá trị của tham số \(m\) để đường thẳng \(d\) cắt trục hoành và trục tung tại các điểm A và B sao cho diện tích tam giác OAB bằng 2 (với O là gốc tọa độ). Cho hai vòi nước chảy vào 1 bồn nước. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 3 giờ rồi dừng lại, sau đó cho vòi thứ hai chảy tiếp vào trong 8 giờ nữa thì đầy bồn. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 1 giờ rồi cho cả 2 vòi chảy tiếp trong 4 giờ nữa thì số nước đã chảy vào bằng 8/9 bồn. Hỏi nếu mỗi vòi chảy riêng thì trong bao lâu nước sẽ đầy bồn đó? Cho đường tròn O đường kính BC = R√2 và điểm A thay đổi trên đường tròn. Đường phân giác trong góc A của tam giác ABC cắt đường tròn O tại K. Hạ AH vuông góc với BC. a) Chứng minh rằng khi A thay đổi, tổng 2AH + KH luôn không đổi. Tính góc B của tam giác ABC biết 3AH = R. b) Đặt AH = x. Tìm x sao cho diện tích tam giác OAH đạt giá trị lớn nhất. Để tải file WORD, vui lòng click vào đường link ở đây: [đường link dẫn tới file WORD]

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.
Đề thi học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương. Trích dẫn Đề thi học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho một mảnh đất hình vuông, chiều dài mỗi cạnh là 1000m. Trên mảnh đất đã trồng 4500 cây ăn trái các loại, cây lớn nhất có đường kính 0,5m. Người ta muốn xây dựng các căn nhà nghỉ dưỡng trên mảnh đất này để làm khu du lịch sinh thái. Hãy chứng minh rằng người ta có thể xây dựng được ít nhất 60 căn nhà nghỉ dưỡng trên mảnh đất (với diện tích mỗi căn nhà là 200m2) mà không phải chặt đi một cây ăn trái nào đã trồng trên mảnh đất. + Cho đường tròn tâm O đường kính AB (A, B cố định). Lấy hai điểm M, N lần lượt thuộc hai nửa đối nhau của đường tròn (O) sao cho góc MAN luôn bằng 60° (M khác B; N khác B). Đường thẳng BN cắt tia AM tại E, đường thẳng BM cắt tia AN tại F. a) Tính tỉ số EF AB. b) Khi tam giác AMN đều, gọi C là điểm di động trên cung nhỏ AN (C khác A; C khác N). Đường thẳng qua M và vuông góc với AC cắt đường thẳng NC tại D. Xác định vị trí của điểm C để diện tích tam giác MCD là lớn nhất. + Cho tấm bìa hình tam giác ABC có trọng tâm G. Gấp tấm bìa theo đường EF sao cho đỉnh C trùng với trọng tâm G (E, F lần lượt nằm trên hai cạnh CA, CB). Khi đó, chứng minh rằng: AC BC EC FC 6.