Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa kỳ thi tuyển sinh THPT năm học 2018 2019 môn Toán sở GD và ĐT TP. HCM

Nội dung Đề minh họa kỳ thi tuyển sinh THPT năm học 2018 2019 môn Toán sở GD và ĐT TP. HCM Bản PDF - Nội dung bài viết Đề minh họa kỳ thi tuyển sinh THPT năm học 2018-2019 môn Toán sở GD và ĐT TP. HCM Đề minh họa kỳ thi tuyển sinh THPT năm học 2018-2019 môn Toán sở GD và ĐT TP. HCM Đề minh họa kỳ thi tuyển sinh lớp 10 THPT năm học 2018 – 2019 môn Toán sở Giáo dục và Đào tạo thành phố Hồ Chí Minh gồm 10 bài toán tự luận, thời gian làm bài 120 phút. Đề thi có lời giải chi tiết. Trích dẫn đề thi: + Một con robot được thiết kế có thể đi thẳng, quay một góc 90 độ sang phải hoặc sang trái. Robot xuất phát từ vị trí A đi thẳng 1 m, quay sang trái rồi đi thẳng 1 m, quay sang phải rồi đi thẳng 3 m, quay sang trái rồi đi thẳng 1 m đến đích tại vị trí B. Tính theo đơn vị mét khoảng cách giữa đích đến và nơi xuất phát của robot (ghi kết quả gần đúng chính xác đến 1 chữ số thập phân). + Thực hiện chương trình khuyến mãi “Ngày Chủ Nhật Vàng” một của hàng điện máy giảm giá 50% trên 1 ti vi cho lô hàng ti vi gồm có 40 cái với giá được bán lẻ trước đó là 6.500.000 đồng/cái. Đến trưa cùng ngày thì cửa hàng đã bán được 20 cái và của hàng quyết định giảm giá thêm 10% nữa (so với giá đã giảm lần 1) cho số ti vi còn lại. a. Tính số tiền mà cửa hàng thu được sau khi bán hết lô hàng ti vi. b. Biết rằng giá vốn là 2.850.000 đồng/cái ti vi. Hỏi của hàng lời hay lỗ khi bán hết lô hàng ti vi đó? + Kính lão đeo mắt của người già thường là một loại thấu kính hội tụ. Bạn Năm đã dùng một chiếc kính lão của ông ngoại để tạo ra hình ảnh của một cây nến trên tấm màn. Cho rằng cây nến là một vật sangscos hình dạng đoạn thẳng AB đặt vuông góc với trục chính của một thấu kính hội tụ, cách thấu kính đoạn OA = 2 m. Thấu kính có quang tâm O và tiêu điểm F. Vật AB cho ảnh thật A B' ' gấp ba lần AB. Tính tiêu cự OF của thấu kính. + Có 45 người gồm bác sĩ và luật sư, tuổi trung bình của họ là 40. Tính số bác sĩ, luật sư biết rằng tuổi trung bình của bác sĩ là 35, tuổi trung bình của luật sư là 50. + Một vệ tinh nhân tạo địa tĩnh chuyển động theo một quỹ đạo tròn cách bề mặt trái đất khoảng 36000 km, tâm quỹ đạo vệ tinh trùng với tâm O của Trái Đất. Vệ tinh phát tín hiệu vô tuyến theo đường thẳng đến một vị trí trên mặt đất. Hỏi vị trí xa nhất trên trái đất có thể nhận được tín hiệu từ vệ sịn này ở cách vệ tinh một khoảng bao nhiêu km. Biết rằng Trái Đất được xem như một hình cầu có bán kính khoảng 6400 km.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Tiền Giang Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Tiền Giang Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Tiền Giang bao gồm 4 bài toán dạng tự luận trên 1 trang, thí sinh có 150 phút để hoàn thành bài thi. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Tiền Giang: Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x^2 và đường thẳng (d) : y = 2mx + 1, với m là tham số. Tìm tất cả các giá trị của m sao cho (d) cắt (P) tại hai điểm phân biệt A, B sao cho OI = √10, với I là trung điểm của AB. Cho phương trình bậc hai (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0 có nghiệm kép, trong đó x là ẩn số và a, b, c là các tham số. Chứng minh rằng a = b = c. Cho x, y là các số thực thay đổi thỏa mãn điều kiện x^2 + y^2 + xy = 3. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức M = x^2 + y^2 - xy. Đề tuyển sinh chuyên Toán năm nay mang đến những bài toán thách thức và đa dạng, giúp thí sinh phát huy khả năng tư duy logic và giải quyết vấn đề. Hãy cùng chuẩn bị kỹ càng để đạt kết quả tốt trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Đồng Nai có đặc điểm nổi bật là gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn nội dung các câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2020 – 2021: Trong mặt phẳng cho 1889 điểm thỏa mãn với 3 điểm bất kỳ tạo thành 3 đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh trong các điểm đã cho tồn tại 237 điểm cùng nằm bên trong hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1/2. Có bao nhiêu cách bỏ 5 cây bút khác màu gồm xanh, đen, tím, đỏ, hồng vào 5 hộp đựng bút khác màu gồm xanh, đen, tím, đỏ, hồng sao cho mỗi hộp chỉ có một bút và màu bút khác với màu hộp? Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, biết AB < AC. Chứng minh các điều kiện sau: Tứ giác ALMO nội tiếp đường tròn, và chứng minh LD là tiếp tuyến của (O). MH vuông góc với AK, suy ra KH vuông góc với AM. Ba điểm A, N, D thẳng hàng. Đề thi tuyển sinh này không chỉ đánh giá kiến thức mà còn đòi hỏi sự linh hoạt, logic và khả năng suy luận của thí sinh. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Long An
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Long An Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Long An Đề thi tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Long An Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 của sở GD&ĐT Long An đưa ra 7 bài toán dạng tự luận trên 1 trang giấy, thời gian làm bài 150 phút. Kỳ thi sẽ diễn ra vào ngày 17 tháng 07 năm 2020. Một số bài toán trong đề thi: Phương trình m(m^2x - m - 2) = 8x + 4 với m là tham số và m khác 2. Tìm tất cả giá trị của m sao cho phương trình có nghiệm nhỏ hơn -2. Đếm số tam giác vuông nhưng không phải tam giác vuông cân được tạo thành từ đa giác đều 24 cạnh A1A2...A23A24. Cho tam giác nhọn ABC có AB < AC. Gọi O, H, G lần lượt là tâm đường tròn ngoại tiếp, trực tâm, trọng tâm của tam giác. Tìm điểm E sao cho tỉ số diện tích ∆EHG và diện tích ∆EOG không thay đổi theo vị trí của điểm E. Đề thi năm nay đòi hỏi học sinh có kiến thức sâu rộng, khả năng suy luận, phân tích tốt để giải quyết các bài toán khó, đa chiều như trên. Hy vọng các thí sinh sẽ tự tin và thành công trong kỳ thi sắp tới!
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT An Giang
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT An Giang Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT An Giang Vào thứ Bảy, ngày 18 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh An Giang đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 – 2021. Đề tuyển sinh này gồm 1 trang với 5 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Đề thi bao gồm đáp án và lời giải chi tiết cho từng bài toán. Một trong những câu hỏi được trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT An Giang là: + Cho ABCD là hình vuông có cạnh 1 đơn vị đo lường. Trên cạnh AB, lấy một điểm E và dựng hình chữ nhật CEFG sao cho điểm D nằm trên cạnh FG. Yêu cầu tính diện tích hình chữ nhật CEFG. + Cho tam giác ABC có ba góc nhọn và nội tiếp trong đường tròn (O). Vẽ các đường cao AA', BB', CC cắt nhau tại H. (a) Chứng minh rằng tứ giác AB'HC' là tứ giác nội tiếp. (b) Kéo dài đường AA' cắt đường tròn (O) tại điểm D. Chứng minh rằng tam giác CDH là tam giác cân. + Cho hàm số y = x^2 có đồ thị là một parabol (P). (a) Vẽ đồ thị (P) trên hệ trục tọa độ. (b) Viết phương trình đường thẳng (d) có hệ số góc bằng -1 và cắt parabol (P) tại điểm có hoành độ bằng 1. (c) Tìm giao điểm của đường thẳng (d) và parabol (P) với điểm đã xác định. Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT An Giang mang đến cho thí sinh những thách thức và cơ hội để thể hiện kiến thức và kỹ năng của mình trong môn học quan trọng này.