Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 2 năm 2018 - 2019 trường Chu Văn An - Hà Nội

Nhằm kiểm tra đánh giá chất lượng môn Toán đối với học sinh khối 12 trong quá trình ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019, vừa qua, trường THPT Chu Văn An, thành phố Hà Nội tổ chức kỳ thi kiểm tra khảo sát lớp 12 môn Toán lần 2 năm học 2018 – 2019. Đề khảo sát Toán 12 lần 2 năm 2018 – 2019 trường Chu Văn An – Hà Nội có mã đề 108, đề gồm 7 trang với 50 câu trắc nghiệm khách quan, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát Toán 12 lần 2 năm 2018 – 2019 trường Chu Văn An – Hà Nội : + Có 5 cặp vợ chồng cùng tham gia một trò chơi trải nghiệm. Ban tổ chức yêu cầu chia họ thành 5 đội A, B, C, D, E sao cho mỗi đội có 2 người hoặc là 1 cặp vợ chồng hoặc cùng là nam hoặc cùng là nữ. Hỏi có bao nhiêu cách chia đội? + Anh An mua một chiếc xe máy theo hình thức trả góp. Anh An sẽ trả tiền mua xe theo bốn đợt, mỗi đợt cách nhau một năm và thời điểm trả tiền đợt đầu là một năm sau ngày mua xe. Số tiền thanh toán mỗi đợt lần lượt là: 5.000.000 đồng, 6.000.000 đồng, 10.000.000 đồng và 20.000.000 đồng. Biết lãi suất áp dụng theo hình thức mua xe của anh An là 8%/ năm. Hỏi chiếc xe máy anh An mua có giá trị là bao nhiêu tiền? + Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, cạnh bên SA vuông góc với đáy (ABC), AB = a, SA = 2a. Gọi M, N lần lượt là trung điểm của SB, SC. Côsin của góc giữa hai mặt phẳng (AMN) và (ABC) bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2016 môn Toán trường C Nghĩa Hưng - Nam Định
Đề thi thử THPT Quốc gia 2016 môn Toán trường C Nghĩa Hưng – Nam Định có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số trùng phương. Câu 2: Tìm các giá trị của m để hàm số đạt cực trị thỏa mãn điều kiện cho trước. Câu 3: a) Giải phương trình lượng giác. b) Tính môđun của số phức z. Câu 4: a) Giải phương trình logarit. b) Tính xác suất để trong tốp ca đó có ít nhất một học sinh nữ. Câu 5: Tính tích phân. Câu 6: Viết phương trình đường thẳng AB. Viết phương trình phẳng (α). Câu 7: Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ D đến mặt phẳng (ACI). Câu 8: Tìm tọa độ các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Văn Trỗi - Hà Tĩnh lần 2
Câu 1: Cho hàm số trùng phương a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số bậc 3. b) Tìm m để phương trình có 3 nghiệm phân biệt. Câu 2 1) Tính giá trị biểu thức lượng giác. 2) Giải phương trình bậc 2 của logarit. Câu 3:Tính tích phân bằng phương pháp tích phân từng phần. Câu 4: a) Tính xác suất để số được chọn chia hết cho 3. b) Tìm phần thực và phần ảo của số phức z. Câu 5: Tìm tọa độ điểm H và tính độ dài MH. Câu 6: Tính thể tích khối chóp S.ABCD và khoảng cách giữa HC và SB. Câu 7: Tìm tọa độ đỉnh D, biết D thuộc đường tròn (C). Câu 8: Giải hệ phương trình. Câu 9: Tìm giá trị lớn nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Đoàn Thượng - Hải Dương lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường Đoàn Thượng – Hải Dương lần 3 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Cho hàm số trùng phương 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Biện luận theo m số nghiệm của phương trình. Câu 2 1) Tính môđun của số phức z. 2) Giải bất phương trình mũ. Câu 3:Tính tích phân bằng phương pháp đặt ẩn phụ. Câu 4: Viết phương trình mặt phẳng qua A và vuông góc với d. Tìm tọa độ điểm A’ đối xứng với A qua đường thẳng d. Câu 5: 1) Giải phương trình lượng giác. 2) Bài toán xác suất liên quan tới bóng đá. Câu 6: Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm C đến mặt phẳng (BDM). Câu 7: Giải hệ phương trình. Câu 8: Viết phương trình đường thẳng BC. Câu 9: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử THPT Quốc gia 2016 môn Toán trường Nguyễn Hữu Cầu - TP.HCM
Đề thi thử THPT Quốc gia 2016 môn Toán trường Nguyễn Hữu Cầu – TP.HCM có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 5 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2: Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng d. Câu 3: a) Tìm tọa độ điểm M biểu diễn số phức z trong mặt phẳng tọa độ Oxy. b) Giải phương trình logarit. Câu 4: Tính tích phân bằng phương pháp đổi biến rồi từng phần. Câu 5: Viết phương trình đường thẳng d đi qua A và vuông góc với (P). Tìm tọa độ điểm B đối xứng với A qua (P). Câu 6 a) Tính giá trị của biểu thức lượng giác. b) Chọn ngẫu nhiên ba số từ tập hợp số. Tính xác suất để ba số được chọn có tổng là một số lẻ. Câu 7: Tính theo a thể tích của khối chóp S.AMCD và khoảng cách giữa hai đường thẳng DM, SC. Câu 8: Tìm tọa độ điểm trong hình học Oxy. Câu 9: Giải bất phương trình vô tỉ. Câu 10: Tìm giá trị lớn nhất của biểu thức 3 biến dạng đối xứng.