Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Bạch Đằng - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đánh giá giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Bạch Đằng, quận 3, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn Đề giữa kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Bạch Đằng – TP HCM : + Cửa hàng Điện Máy Xanh niêm yết giá bán chiếc ti vi Smart Samsung 43 inch cao hơn 35% so với giá nhập vào. Nhân dịp Tết Nguyên Đán, cửa hàng bán ra chỉ với giá bằng 90% giá niêm yết. Sau khi bán ti vi, cửa hàng đã lời được 516 000 đồng. Hỏi giá nhập vào của chiếc ti vi đó là bao nhiêu? + Trong nguyên tử có 3 loại hạt cơ bản là: Hạt electron (ký hiệu e), hạt proton (ký hiệu p), hạt notron (ký hiệu n). Trong 3 loại hạt cơ bản đó thì hạt proton mang điện tích dương và hạt electron mang điện tích âm, còn hạt notron không mang điện. Số hạt proton bằng số hạt electron. Nguyên tử A có tổng cộng 116 hạt cơ bản. Trong đó, số hạt notron nhiều hơn số hạt electron là 11 hạt. Tính số lượng mỗi hạt có trong nguyên tử A. + Từ A ở ngoài (O) vẽ hai tiếp tuyến AB, AC đến (O). Vẽ cát tuyến ADE (AD nằm giữa AB và AO). Tia phân giác của góc EBD cắt ED tại I. Trên tia AO lấy K sao cho AK = AB. a/ Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh AB2 = AD.AE và tứ giác BIKC nội tiếp. c)Gọi M, N lần lượt là trung điểm của ED và EO. Vẽ OM cắt BC tại S. Chứng minh MN vuông góc SD.

Nguồn: toanmath.com

Đọc Sách

Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Phúc Đồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Hai Bà Trưng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Hai Bà Trưng – TP HCM : + Cho phương trình: 2×2 + 3x – 2 = 0 có hai nghiệm là x1 và x2. a) Tính tổng và tích của hai nghiệm x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A = x12 + x22. + Bạn Bình tiêu thụ 10,4 ca-lo cho mỗi phút bơi và 4,8 ca-lo mỗi phút chạy bộ. Bạn Bình cần tiêu thụ tổng cộng 324 ca-lo trong 50 phút với hai hoạt động trên. Vậy bạn Bình cần bao nhiêu thời gian cho mỗi hoạt động? + Cho tam giác SMN nhọn nội tiếp đường tròn (O) (SM < SN). Ba đường cao SI, MF, NE của tam giác SMN cắt nhau tại D. a) Chứng minh EFNM là tứ giác nội tiếp. b) Đường thẳng SI cắt đường tròn (O) tại A (A khác S). Qua A vẽ đường thẳng vuông góc với SN, đường thẳng này cắt MN tại H, cắt đường tròn (O) tại K (K khác A). Chứng minh HA.HK = HM.HN. c) Gọi T là giao điểm của FE và NM; ST cắt đường tròn (O) tại C (C khác S). Chứng minh ba điểm K, F, C thẳng hàng.
Đề giữa học kì 2 Toán 9 năm 2023 - 2024 trường THCS Chương Dương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Chương Dương, quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2023 – 2024 trường THCS Chương Dương – Hà Nội : + Theo kế hoạch, hai tổ sản xuất 1100 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 15%. Vì vậy trong thời gian quy định, họ đã hoàn thành vượt mức 180 sản phẩm. Tính số sản phẩm mỗi tổ được giao theo kế hoạch. + Trong mặt phẳng toạ độ Oxy, cho parabol (P): 2 y x và đường thẳng (d): y = 3x – 2. Biết (d) cắt (P) tại hai điểm A, B. a) Vẽ đường thẳng (d) và parabol (P) trên cùng một mặt phẳng toạ độ. b) Xác định toạ độ hai điểm A và B. c) Tính diện tích tam giác OAB. + Cho nửa đường tròn (O), đường kính AB = 2R. Gọi Ax là tia tiếp tuyến tại A của nửa đường tròn (O). Trên tia Ax lấy điểm M bất kì (M ≠ A), MB cắt nửa đường tròn tại điểm thứ hai là K. Qua A kẻ đường thẳng vuông góc với MO tại I. a) Chứng minh: Tứ giác AIKM nội tiếp. b) Chứng minh MIK = KBA từ đó chứng minh 4 điểm K, I, O, B nằm trên cùng một đường tròn. c) Kéo dài AI cắt nửa đường tròn tại C (C ≠ A). Kẻ CH vuông góc với AB tại H. Tìm vị trí điểm M trên tia Ax để ∆ICH đều. (vị trí điểm M tìm được chỉ dùng cho câu c) d) Gọi N là trung điểm của CH, chứng minh K, N, B thẳng hàng.