Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn thi TN THPT 2021 môn Toán trường THPT Nguyễn Quán Nho - Thanh Hóa

Thứ Bảy ngày 29 tháng 05 năm 2021, trường THPT Nguyễn Quán Nho, huyện Thiệu Hóa, tỉnh Thanh Hóa tổ chức kỳ thi kiểm tra chất lượng ôn thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề ôn thi TN THPT 2021 môn Toán trường THPT Nguyễn Quán Nho – Thanh Hóa mã đề 301 gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề ôn thi TN THPT 2021 môn Toán trường THPT Nguyễn Quán Nho – Thanh Hóa : + Mặt tiền nhà ông An có chiều ngang AB m 4, ông An muốn thiết kế lan can nhô ra có dạng là một phần của đường tròn C (hình vẽ). Vì phía trước vướng cây tại vị trí F nên để an toàn, ông An cho xây đường cong cách 1m tính từ trung điểm D của AB. Biết AF m 2, 0 DAF 60 và lan can cao 1m làm bằng inox với giá 2 2 triệu/m2. Tính số tiền ông An phải trả (làm tròn đến hàng ngàn). + Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D. Biết AB a 4, AD CD a 2. Cạnh bên SA a 3 và SA vuông góc với mặt phẳng đáy. Gọi G là trọng tâm tam giác SBC, M là điểm sao cho MA MS 2 và E là trung điểm cạnh CD (tham khảo hình vẽ). Tính thể tích V của khối đa diện MGABE. + Một lớp có 35 đoàn viên trong đó có 15 nam và 20 nữ. Chọn ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại 26 tháng 3. Tính xác suất để trong 3 đoàn viên được chọn có cả nam và nữ?

Nguồn: toanmath.com

Đọc Sách

Đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán - Toán Học Tuổi Trẻ (Đề số 3)
Như thường lệ hàng tháng, hôm nay – vào khoảng thời gian giữa tháng 02 năm 2019, tạp chí Toán học Tuổi trẻ đã xuất bản số báo THTT 500 (2-2019) để gửi đến đọc giả cả nước, và trong số báo này, xin trích dẫn và chia sẻ đến bạn đọc lời giải chi tiết đề THTT lần 2 năm 2019 và đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 3). Đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 3) được biên soạn bởi thầy Nguyễn Văn Xá – giáo viên Toán trường THPT Yên Phong số 2, tỉnh Bắc Ninh, đề gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, đề bám sát cấu trúc đề tham khảo Toán 2019 của Bộ GD&ĐT với nhiều dạng toán ở mức độ vận dụng và vận dụng cao, đáp án và lời giải chi tiết của đề sẽ được cập nhật khi số báo THTT tiếp theo (số 501) được phát hành. [ads] Trích dẫn đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 3) : + Một khối nón làm bằng chất liệu không thấm nước, có khối lượng riêng lớn hơn khối lượng riêng của nước, có đường kính đáy a và chiều cao 12, được đặt vào trong và trên đáy của một cái cốc hình trụ bán kính đáy a như hình vẽ, sao cho đáy của khối nón tiếp xúc với đáy của cốc hình trụ. Đổ nước vào cốc hình trụ đến khi mực nước đạt đến độ cao 12 thì lấy khối nón ra. Hãy tính độ cao của nước trong cốc sau khi đã lấy khối nón ra. + Các ông Xuân, Hạ, Thu, Đông cùng góp chung số vốn 600 tỉ đồng để thành lập một công ty. Số tiền ông Xuân, Hạ, Thu góp lần lượt bằng 1/2, 1/3, 1/4 tổng số tiền của ba người còn lại. Hỏi ông Đông góp bao nhiêu tiền? A. 200 tỉ đồng. B. 150 tỉ đồng. C. 120 tỉ đồng. . D. 130 tỉ đồng. + Cho số nguyên dương n và n tam giác ABC, A1B1C1 … AnBnCn, trong đó các điểm Ai+1, Bi+1, Ci + 1 lần lượt thuộc các đoạn thẳng BiCi, CiAi, AiBi (i = 1, n – 1) sao cho Ai+1Ci = 2Ai+1Bi, Bi+1Ai = 2Bi+1Ci, Ci+1Bi = 2Ci+1Ai. Gọi S là tổng tất cả diện tích của n tam giác đó. Tìm số nguyên dương n biết rằng S = 3(1 – 1/3^2018) và tam giác A1B1C1 có diện tích bằng 2.
Đề kiểm tra Toán chuẩn bị thi THPTQG 2019 trường THPT Gia Định - TP. HCM lần 1
Đề kiểm tra Toán chuẩn bị thi THPTQG 2019 trường THPT Gia Định – TP. HCM lần 1 mã đề 891 gồm 04 trang với 50 câu trắc nghiệm, học sinh làm bài thi trong 90 phút, kỳ thi nhằm giúp học sinh có những bước chuẩn bị thật tốt để đạt điểm số cao trong kỳ thi chính thức Trung học Phổ thông Quốc gia 2019 môn Toán sắp tới, đề thi có đáp án. Trích dẫn đề kiểm tra Toán chuẩn bị thi THPTQG 2019 trường THPT Gia Định – TP. HCM lần 1 : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều, mặt bên (SCD) là tam giác vuông cân tại S. Gọi M là điểm thuộc đường thẳng CD sao cho BM vuông góc với SA. Tính thể tích V của khối chóp S.BDM. [ads] + Hình nón (N) có đình S, tâm đường tròn đáy là O, góc ở định bằng 120°. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3. Tính diện tích xung quanh Sxq của hình nón (N). + Một người gửi tiết kiệm vào ngân hàng với lãi suất 7,5 %/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền đã gửi, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Đề tập huấn thi THPT Quốc gia 2019 môn Toán sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh khối 12 nội dung đề tập huấn thi THPT Quốc gia 2019 môn Toán sở GD&ĐT Bắc Ninh, kỳ thi nhằm giúp các em làm quen với hình thức tổ chức thi, nắm được cấu trúc đề, các dạng toán cần ôn luyện, để có phương pháp ôn tập hiệu quả cho giai đoạn khoảng 5 tháng còn lại trước khi bắt đầu kỳ thi THPT Quốc gia 2019 môn Toán. Đề tập huấn thi THPT Quốc gia 2019 môn Toán sở GD&ĐT Bắc Ninh có mã đề 102 gồm 05 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài thi trong thời gian 90 phút (không tính thời gian giám thị coi thi phát đề), đề được biên soạn theo cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 mà Bộ Giáo dục và Đào tạo đã công bố vào ngày 06 tháng 12 năm 2018, kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2019, đề thi có đáp án. Trích dẫn đề tập huấn thi THPT Quốc gia 2019 môn Toán sở GD&ĐT Bắc Ninh : + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; AD = 3BC = 3a, AB = a, SA = a√3. Điểm I thỏa mãn vectơ AD = 3AI; M là trung điểm SD, H là giao điểm của AM và SI. Gọi E, F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD). [ads] + Cho phương trình m.ln^2(x + 1) – (x + 2 – m).ln(x + 1) – x – 2 = 0 (1). Tập tất cả giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a;+∞). Khi đó a thuộc khoảng nào sau đây? + Khối đa diện nào có số đỉnh nhiều nhất? A. Khối thập nhị diện đều (12 mặt đều). B. Khối bát diện đều (8 mặt đều). C. Khối tứ diện đều. D. Khối nhị thập diện đều (20 mặt đểu).
Đề kiểm tra kiến thức Toán ôn thi THPTQG 2019 trường Yên Định 2 - Thanh Hóa lần 1
Đề kiểm tra kiến thức Toán ôn thi THPTQG 2019 trường Yên Định 2 – Thanh Hóa lần 1 mã đề 132 được biên soạn nhằm giúp học sinh thi thử để làm quen với kỳ thi THPT Quốc gia môn Toán 2019, giúp các em nắm được cấu trúc đề thi để có phương hướng ôn tập đúng đắn, đề thi được biên soạn theo cấu trúc gần giống với đề minh họa Toán 2019 do Bộ Giáo dục và Đào tạo công bố, đề gồm 06 trang với 50 câu trắc nghiệm, học sinh làm bài thi trong 90 phút. Trích dẫn đề kiểm tra kiến thức Toán ôn thi THPTQG 2019 trường Yên Định 2 – Thanh Hóa lần 1 : + Cho hình chóp tam giác đều S.ABC. Hình nón có đỉnh S và có đường tròn đáy là đường tròn nội tiếp tam giác ABC gọi là hình nón nội tiếp hình chóp S.ABC, hình nón có đỉnh S và có đường tròn đáy là đường tròn ngoại tiếp tam giác ABC gọi là hình nón ngoại tiếp hình chóp S.ABC. Tỉ số thể tích của hình nón nội tiếp và hình nón ngoại tiếp hình chóp đã cho bằng? [ads] + Lớp 11A trường THPT Yên Định 2 – Thanh Hóa có n học sinh, trong đó có18 học sinh giỏi Toán, 12 học sinh giỏi Văn và 10 học sinh không giỏi môn nào. Giáo viên chủ nhiệm chọn ra 2 học sinh học giỏi Toán hoặc Văn để đi dự hội nghị. Xác suất để trong 2 học sinh được chọn có đúng 1 học sinh giỏi cả Toán và Văn là 9/23. Tính số học sinh của lớp 11A? + Thầy giáo trường THPT Yên Định 2 – Thanh Hóa có 10 câu hỏi trắc nghiệm, trong đó có 6 câu đại số và 4 câu hình học. Thầy gọi bạn Nam lên trả bài bằng cách chọn lấy ngẫu nhiên 3 câu hỏi trong 10 câu hỏi trên để trả lời. Hỏi xác suất bạn Nam chọn ít nhất có một câu hình học là bằng bao nhiêu?