Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GDĐT

Tài liệu gồm 198 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT: 1. PHÉP ĐẾM (QUY TẮC CỘNG – QUY TẮC NHÂN). 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 2.1 Đếm số (chỉ dùng một loại P hoặc A hoặc C). 2.2 Chọn người, vật. 3. XÁC SUẤT. 4. CẤP SỐ CỘNG. 5. CẤP SỐ NHÂN. 6. ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. 6.1 Góc giữa đường thẳng và mặt phẳng. 6.2 Góc giữa đường thẳng và mặt phẳng. 7. KHOẢNG CÁCH. 7.1 Từ chân H của đường cao đến mặt phẳng cắt đường cao. 7.2 Từ điểm M (khác H) đến mặt phẳng cắt đường cao. 7.3 Hai đường chéo nhau (vẽ đoạn vuông góc chung). 7.4 Hai đường chéo nhau (mượn mặt phẳng). 8. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ. 8.1 Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên của y). 8.2 Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8.3 Điều kiện để hàm số nhất biến đơn điệu trên khoảng K. 8.4 Đơn điệu liên quan hàm hợp, hàm ẩn. 8.5 Ứng dụng tính đơn điệu vào PT – BPT – HPT – BĐT. 9. CỰC TRỊ CỦA HÀM SỐ. 9.1 Tìm cực trị của hàm số cho bởi công thức của y, y’. 9.2 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng biến thiên của y). 9.3 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng xét dấu của y’). 9.4 Cực trị liên quan hàm hợp, hàm ẩn. 9.5 Cực trị liên quan hàm chứa dấu giá trị tuyệt đối. 10. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. 10.1 GTLN – GTNN của f(x) trên đoạn [a;b] biết biểu thức f(x). 10.2 Tìm m để hàm số f(x) có GTLN – GTNN thỏa mãn điều kiện cho trước. 10.3 GTLN – GTNN hàm nhiều biến dạng khác. 11. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. 11.1 Tiệm cận đồ thị hàm số phân thức hữu tỷ, không chứa tham số. 11.2 Tiệm cận đồ thị hàm số f(x) dựa vào bảng biến thiên không tham số. 12. ĐỌC ĐỒ THỊ – BIẾN ĐỔI ĐỒ THỊ. 12.1 Nhận dạng các hàm số thường gặp (biết đồ thị, bảng biến thiên). 12.2 Xét dấu hệ số của biểu thức (biết đồ thị, bảng biến thiên). 12.3 Đọc đồ thị của đạo hàm (các cấp. 12. TƯƠNG GIAO CỦA HAI ĐỒ THỊ. 12.1 Tìm toạ độ (đếm) giao điểm. 12.2 Đếm số nghiệm phương trình cụ thể (cho đồ thị, bảng biến thiên). 12.3 Tương giao liên quan hàm hợp, hàm ẩn. 12.4 Điều kiện để f(x) = g(m) có n nghiệm (chứa GTTĐ). 12.5 Điều kiện để f(x) = g(m) có n nghiệm thuộc K (không GTTĐ). 13. MŨ – LŨY THỪA. 13.1 Kiểm tra quy tắc biến đổi lũy thừa, tính chất. 13.2 Tính toán, rút gọn các biểu thức có chứa biến(a, b, c, x, y, . . .). 14. LOGARIT. 14.1 Câu hỏi lý thuyết và tính chất. 14.2 Biến đổi các biểu thức logarit liên quan a, b, x, y. 14.3 Tính giá trị các biểu thức logarit không dùng BĐT. 14.4 Dạng toán khác về logarit. 15. HÀM SỐ MŨ – LOGARIT. 15.1 Tập xác định liên quan hàm số mũ, hàm số logarit. 15.2 Đạo hàm liên quan hàm số mũ, hàm số logarit. 15.3 Đồ thị liên quan hàm số mũ, logarit. 15.4 Câu hỏi tổng hợp liên quan hàm số lũy thừa, mũ, logarit. 15.5 Bài toán lãi suất. 15.6 Bài toán tăng trưởng. 15.6 Hàm số mũ,logarit chứa tham số. 15.6 GTLN – GTNN liên quan hàm mũ, hàm logarit(nhiều biến). 16. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ. 16.1 PT – BPT mũ cơ bản, gần cơ bản (không tham số). 16.2 Phương pháp đưa về cùng cơ số (không tham số). 16.3 Phương pháp hàm số, đánh giá (không tham số). 17. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT. 17.1 Câu hỏi lý thuyết. 17.2 PT – BPT logarit cơ bản, gần cơ bản (không tham số). 17.3 Phương pháp đưa về cùng cơ số (không tham số). 17.4 Phương pháp phân tích thành nhân tử (không tham số). 17.5 Phương pháp hàm số, đánh giá (không tham số). 17.6 Phương trình logarit có chứa tham số. 17.7 Phương trình, bất phương trình tổ hợp cả mũ và logarit có tham số. 18. NGUYÊN HÀM. 18.1 Định nghĩa, tính chất của nguyên hàm. 18.2 Nguyên hàm của hàm số cơ bản, gần cơ bản. 18.3 Nguyên hàm phân thức. 18.4 Phương trình nguyên hàm từng phần. 18.5 Nguyên hàm kết hợp đổi biến và từng phần hàm xác định. 18.6 Nguyên hàm liên quan đến hàm ẩn. 19. TÍCH PHÂN. 19.1 Kiểm tra định nghĩa, tính chất của tích phân. 19.2 Tích phân cơ bản, kết hợp tính chất. 19.3 Phương pháp tích phân từng phần hàm xác định. 19.4 Kết hợp đổi biến và từng phần tính tích phân hàm xác định. 19.5 Tích phân liên quan đến phương trình hàm ẩn. 20. ỨNG DỤNG TÍCH PHÂN. 20.1 Xác định công thức tính diện tích, thể tích dựa vào đồ thị. 20.2 Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định. 20.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định. 21. KHÁI NIỆM SỐ PHỨC. 21.1 Các yếu tố và thuộc tính cơ bản của số phức. 22. CÁC PHÉP TOÁN SỐ PHỨC. 22.1 Thực hiện các phép toán cơ bản về số phức. 22.2 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán. 22.3 Giải phương trình bậc nhất theo z (và z liên hợp). 23. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. 23.1 Câu hỏi lý thuyết, biểu diễn hình học của số phức. 23.2 Tập hợp điểm biểu diễn là đường tròn, hình tròn. 24. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 24.1 Tính toán biểu thức nghiệm. 24.1 Các bài toán biểu diễn hình học nghiệm của phương trình. 24.1 Các bài toán khác về phương trình. 25. THỂ TÍCH KHỐI CHÓP. 25.1 Câu hỏi dạng lý thuyết (công thức V, h, B). 25.2 Thể tích khối chóp đều. 25.3 Thể tích khối chóp khác. 25.4 Tỉ số thể tích trong khối chóp. 26. THỂ TÍCH KHỐI LĂNG TRỤ – ĐA DIỆN KHÁC. 26.1 Câu hỏi dạng lý thuyết(Công thức V, h, B). 26.2 Thể tích khối lập phương, khối hộp chữ nhật. 26.3 Thể tích khối lăng trụ đều. 26.4 Thể tích khối đa diện phức tạp. 27. KHỐI NÓN. 27.1 Câu hỏi lý thuyết về khối nón. 27.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản. 28. KHỐI TRỤ. 28.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản. 28.2 Bài toán thực tế về khối trụ. 29. KHỐI CẦU. 29.1 Câu hỏi chỉ liên quan đến biến đổi V, S, R. 29.2 Khối cầu nội – ngoại tiếp, liên kết khối đa diện. 29.3 Bài toán tổng hợp về khối nón, khối trụ, khối cầu. 30. TỌA ĐỘ ĐIỂM – VECTƠ. 30.1 Hình chiếu của điểm lên các trục tọa độ, lên các mặt phẳng tọa độ và điểm đối xứng của nó. 31. PHƯƠNG TRÌNH MẶT CẦU. 31.1 Tìm tâm và bán kính, điều kiện xác định mặt cầu. 32.1 Điểm thuộc mặt cầu thoả điều kiện. 32. PHƯƠNG TRÌNH MẶT PHẲNG. 32.1 Tìm VTPT, các vấn đề về lý thuyết. 32.2 Phương trình mặt phẳng trung trực của đoạn thẳng. 32.3 Phương trình mặt phẳng qua một điểm, dễ tìm VTPT (không dùng tích có hướng). 33.4 Phương trình mặt phẳng qua một điểm, song song với một mặt phẳng. 33.5 Phương trình mặt phẳng theo đoạn chắn. 33.6 Phương trình mặt phẳng qua một điểm, vuông góc với đường thẳng. 33. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 33.1 Các câu hỏi chưa phân dạng. 33.2 Tìm VTCP, các vấn đề về lý thuyết. 33.3 Phương trình đường thẳng qua một điểm, dễ tìm VTCP (không dùng tích có hướng). 33.4 Phương trình đường thẳng qua một điểm, thoả điều kiện khác. 33.5 Toán GTLN – GTNN liên quan đến đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GDĐT Tây Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh khối 12 tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh. Tài liệu gồm 123 trang bao gồm tổng hợp lý thuyết, hướng dẫn giải các dạng toán và hệ thống bài tập trắc nghiệm có đáp án và lời giải chi tiết, giúp học sinh ôn tập chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Khái quát nội dung tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh: Phần 1. Phân tích cấu trúc đề minh họa tốt nghiệp THPT 2020 môn Toán. Số câu theo chương mục: 1. Tổ hợp, xác suất: 2. 2. Dãy số, cấp số: 1. 3. Quan hệ vuông góc: 2. 4. Ứng dụng đạo hàm, khảo sát hàm số: 12. 5. Lũy thừa, mũ, lôgarit: 9. 6. Nguyên hàm, tích phân: 5. 7. Số phức: 5. 8. Thể tích khối đa diện: 3. 9. Khối tròn xoay: 5. 10. Hình tọa độ không gian: 6. [ads] Số câu theo mức độ nhận thức: 1. Nhận biết: 21. 2. Thông hiểu: 17. 3. Vận dụng thấp: 7. 4. Vận dụng cao: 5. Phần 2. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Phần 3. Mũ và lôgarit. Phần 4. Nguyên hàm, tích phân và ứng dụng. Phần 5. Số phức. Phần 6. Khối đa diện và khối tròn xoay. Phần 7. Phương pháp tọa độ trong không gian. Phần 8. Ôn tập kiến thức Toán 11.
50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán
Tài liệu gồm 1368 trang, được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phát triển 50 dạng toán dựa trên đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 do Bộ Giáo dục và Đào tạo công bố, giúp học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Khái quát nội dung tài liệu 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán: Dạng 1. Hoán vị – chỉnh hợp – tổ hợp. Dạng 2. Cấp số cộng và cấp số nhân. Dạng 3. Giải bất phương trình mũ và lôgarit. Dạng 4. Tính thể tích khối lăng trụ đứng. Dạng 5. Hàm số mũ – lôgarít. Dạng 6. Nguyên hàm. Dạng 7. Thể tích khối đa diện (khối chóp). Dạng 8. Khối nón – trụ – cầu (công thức thể tích khối nón). Dạng 9. Diện tích mặt cầu. Dạng 10. Tính đơn điệu của hàm số. Dạng 11. Rút gọn biểu thức lôgarit đơn giản. Dạng 12. Khối nón – trụ – cầu. Dạng 13. Tìm điểm cực trị của hàm số. Dạng 14. Khảo sát và vẽ đồ thị hàm số. Dạng 15. Tiệm cận của đồ thị hàm số. Dạng 16. Bất phương trình logarit. Dạng 17. Sự tương giao đồ thị. Dạng 18. Nguyên hàm – tích phân. Dạng 19. Xác định số phức liên hợp khi đã biết số phức. Dạng 20. Số phức (tìm phần thực của tổng hai số phức). Dạng 21. Tìm điểm biểu diễn của số phức. Dạng 22. Xác định hình chiếu của điểm lên mặt phẳng. Dạng 23. Xác định tâm bán kính diện tích thể tích của mặt cầu. Dạng 24. Phương trình mặt phẳng. Dạng 25. Phương trình đường thẳng. [ads] Dạng 26. Góc giữa đường thẳng và mặt phẳng. Dạng 27. Cực trị hàm số khi biết bảng biến thiên hoặc đồ thị hàm số. Dạng 28. Giá trị lớn nhất – giá trị nhỏ nhất của hàm số. Dạng 29. Logarit có tham số. Dạng 30. Sự tương giao của hai đồ thị. Dạng 31. Bất phương trình mũ – logarit. Dạng 32. Mặt nón – mặt trụ – mặt cầu. Dạng 33. Nguyên hàm – tích phân. Dạng 34. Ứng dụng tích phân (tính diện tích hình phẳng). Dạng 35. Số phức. Dạng 36. Các bài toán liên quan đến nghiệm của số phức. Dạng 37. Phương trình đường thẳng trong Oxyz. Dạng 38. Viết phương trình đường thẳng. Dạng 39. Tổ hợp – xác suất(xác suất của biến cố). Dạng 40. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 41. Tính đơn điệu của hàm số. Dạng 42. Hàm số mũ hàm số logarits (bài toán thực tế). Dạng 43. Xác định các hệ số của hàm số nhất biến. Dạng 44. Khối nón trụ cầu. Dạng 45. Tích phân liên quan đến hàm ẩn. Dạng 46. Tìm số nghiệm của phương trình. Dạng 47. Tiệm cận của đồ thị hàm số. Dạng 48. GTLN – GTNN của hàm phụ thuộc tham số trên đoạn. Dạng 49. Thể tích khối đa diện (thể tích khối đa diện được cắt ra từ một khối khác). Dạng 50. Phương trình mũ – lôgarit.
Phương pháp chọn đại diện giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn phương pháp chọn đại diện để giải các bài toán trắc nghiệm trong chương trình Toán 12, giúp học sinh ôn thi THPT Quốc gia môn Toán. Các bài toán trong tài liệu được chọn lọc từ các đề thi thử THPT Quốc gia môn Toán, được giải bằng hai cách: cách thông thường và cách chọn đại diện, nhằm giúp bạn đọc thấy được ưu điểm của phương pháp chọn đại diện trong giải toán. Khái quát nội dung tài liệu phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh: Việc tìm ra đáp án đúng cho bài toán trắc nghiệm là rất khác so với việc trình bày bài giải tự luận. Giải quyết bài toán tự luận, chúng ta phải trình bày lời giải bài toán theo suy luận của mình, sao cho người đọc hiểu đúng, dựa trên nền tảng kiến thức chuẩn mực. Với bài thi toán trắc nghiệm, học sinh không cần trình bày lời giải và có nhiều cách tiếp cận. Không cần xét mọi trường hợp, có thể một vài trường hợp cũng đủ chọn được đáp án vì loại được các khả năng khác. Các suy luận không cần diễn giải, viết ra, chỉ viết ý chính để tìm ra đáp án khi nháp. [ads] Nếu bài toán đúng với mọi giá trị x thuộc K thì nó sẽ đúng với một giá trị xác định x0 thuộc K. 1. Một số bài toán về hàm số. 2. Một số bài toán về hàm số lũy thừa, hàm số mũ và hàm số lôgarit. 3. Một số bài toán về nguyên hàm và tích phân. 4. Một số bài toán về số phức. 5. Một số bài toán hình học không gian. 6. Một số bài toán hình học giải tích. 7. Một số bài toán khác.
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu, một chủ đề rất quan trọng trong chương trình Toán THPT. Bên cạnh tài liệu bài toán tối ưu dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu: A. BÀI TẬP TRẮC NGHIỆM B. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM