Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT chuyên ĐHSP Hà Nội

Thứ Tư ngày 11 tháng 12 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội tổ chức kì thi kiểm tra chất lượng cuối học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT chuyên ĐHSP Hà Nội gồm có 04 mã đề: 132, 209, 357, 485; đề được biên soạn theo dạng kết hợp giữa trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm có 20 câu, chiếm 5,0 điểm, phần tự luận gồm có 04 câu, chiếm 5,0 điểm, học sinh có 90 phút để hoàn thành bài thi HK1 Toán 11, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT chuyên ĐHSP Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Hai mặt bên SAB, SCD là các tam giác đều. Gọi G là trọng tâm tam giác SAB, E là điểm di động trên đoạn thẳng BG (E khác B). Cho mp(α) qua E, song song với SA và BC. a) Chứng minh rằng đường thẳng AD song song với mp(α). Tìm giao điểm M, N, P, Q của mp(α) với các cạnh SB, SC, DC, BA. b) Gọi I là giao điểm của QM và PN. Chứng minh I nằm trên một đường thẳng cố định khi điểm E di động trên đoạn BG. c) Chứng minh tam giác IPQ là tam giác đều. Tính diện tích tam giác IPQ theo a. [ads] + Trong các khẳng định sau, khẳng định nào đúng? A. Qua ba điểm phân biệt bất kì có duy nhất một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. C. Qua hai điểm phân biệt có duy nhất một mặt phẳng. D. Qua bốn điểm phân biệt bất kì có duy nhất một mặt phẳng. + Cho hình chóp S.ABCD, gọi M, N, P theo thứ tự là trung điểm các cạnh BC, CD và SA. Mặt phẳng (MNP) cắt hình chóp S.ABCD theo thiết diện là hình gì? A. Ngũ giác. B. Tứ giác. C. Lục giác. D. Tam giác.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Tạ Quang Bửu - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Tạ Quang Bửu – TP HCM : + Trong giờ thí nghiệm có 20 học sinh, giáo viên chọn 4 học sinh để làm công tác dọn dẹp sau khi làm thí nghiệm xong. Hỏi Giáo viên có bao nhiêu cách chọn? + Một hộp chứa 15 viên bi khác nhau, trong đó có 5 viên bi màu trắng và 10 viên bi màu đỏ, lấy ngẫu nhiên cùng một lúc 6 viên bi. Tính xác suất sao cho 6 viên bi được lấy ra có ít nhất 4 viên bi trắng. + Tìm số hạng chứa x^21 có trong khai triển nhị thức Niu-tơn của biểu thức (x – 2x^3)^15.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy gồm 8 ghế. Người ta muốn xếp chỗ ngồi cho 8 học sinh trường A và 8 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp sao cho bất cứ 2 học sinh nào ngồi đối diện nhau thì khác trường với nhau? + Hộp thứ nhất có 2 bi đỏ và 10 bi vàng, hộp thứ hai có 8 bi đỏ và 4 bi vàng. Lấy từ mỗi hộp 3 viên bi. Tính xác suất để 6 bi được chọn có đủ hai màu. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập các số tự nhiên có 5 chữ số khác nhau. Chọn ngẫu nhiên một số trong các số đó. Tính xác suất để số được chọn là số tự nhiên chẵn, có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Trần Phú - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Trần Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Trần Phú – TP HCM : + Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAD. Lấy điểm M thuộc cạnh AB sao cho AB = 3AM. 1) Tìm giao tuyến của mặt phẳng (SAD) và mặt phẳng (GBC). Tìm giao điểm H của đường thẳng BC với mặt phẳng (SGM). 2) Chứng minh rằng đường thẳng MG song song với mặt phẳng (SBC). 3) Mặt phẳng (a) qua M và song song với AD và SB, (a) cắt các cạnh CD, SD, SA lần lượt tại các điểm N, P, Q. Xác định thiết diện của mặt phẳng (a) với hình chóp S.ABCD. + Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Cho A = {0; 1; 2; 3; 4; 5; 6; 7}. a/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau? b/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau và chia hết cho 5? c/ Gọi S là tập các số có bốn chữ số khác nhau được lập từ tập A. Lấy ngẫu nhiên một số từ tập S, tính xác suất số lấy được là một số chia hết cho 4. + Giải các phương trình lượng giác sau. + Tìm số hạng không chứa x trong khai triển (x2 – 1/x4)^12.