Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình mũ không chứa tham số

Tài liệu gồm 23 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình mũ không chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM SỐ – ĐÁNH GIÁ (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP HÀM SỐ: Tính chất 1: Nếu hàm số y fx liên tục và luôn đồng biến (hoặc luôn nghịch biến) trên a b thì phương trình fx k có không quá một nghiệm trên a b. Tính chất 2: Nếu hàm số y fx liên tục và luôn đồng biến (hoặc luôn nghịch biến); hàm số y gx liên tục và luôn nghịch biến (hoặc luôn đồng biến) trên a b thì phương trình: f x gx có không quá một nghiệm trên a b. Tính chất 3: Nếu y fx đồng biến hoặc nghịch biến trên a b thì fu fv u v. Tính chất 4: Nếu n f x x ba hoặc n f x x ba thì phương trình f x 0 có nhiều nhất n nghiệm x ∈ (a;b). Tính chất 5: Cho hàm số y fx có đạo hàm đến cấp k liên tục trên a b. Nếu phương trình 0 k f x có đúng m nghiệm thì phương trình 1 0 k f x có nhiều nhất là m + 1 nghiệm. PHƯƠNG PHÁP ĐÁNH GIÁ: Quy tắc 1. Giải phương trình f x gx. Xác định 0 x x là một nghiệm của phương trình. Chứng minh với mọi 0 0 x x thì phương trình vô nghiệm. Kết luận 0 x x là nghiệm duy nhất. Quy tắc 2. Giải phương trình f x gx. Xét trên tập xác định D ta có fx m x D f x m gx x D gx m x D Phương trình thỏa mãn khi f x gx m Hoặc đánh giá trực tiếp f x gx. Từ đó tìm dấu xảy ra. Quy tắc 3. Sử dụng tính chất của hàm số lượng giác. Ta có: sin cos Điều kiện để hàm số lượng giác a xb x c cos sin có nghiệm là 222 abc Giá trị lượng giác của góc (cung) có liên quan đặc biệt. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM ĐẶC TRƯNG (KHÔNG CHỨA THAM SỐ) Nếu hàm số y fx đơn điệu trên K thì với mọi uv K ta có fu fv u v. Nếu hàm số y fx đơn điệu trên K thì trên K phương trình f x 0 có tối đa một nghiệm. Phương trình fu fv: Bước 1: Biến đổi phương trình về dạng fu fv với uv K trong đó y ft là hàm số đơn điệu trên K. Bước 2: Khảo sát hàm số y ft để đưa ra tính đơn điệu của hàm số y ft trên K. Bước 3: Kết luận fu fv u v. Phương trình f u 0. Bước 1: Biến đổi phương trình về dạng f u 0 với u K trong đó y ft là hàm số đơn điệu trên K. Bước 2: Khảo sát hàm số y ft để đưa ra tính đơn điệu của hàm số y ft trên K. Bước 3: Tìm giá trị 0 u sao cho f u 0 0. Bước 3: Kết luận phương trình 0 fu u u. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN (KHÔNG CHỨA THAM SỐ) Phương pháp đặt ẩn phụ không hoàn toàn là việc sử dụng một ẩn phụ chuyển phương trình ban đầu thành một phương trình với một ẩn phụ nhưng các hệ số vẫn còn chứa x. Phương pháp này thường được sử dụng đối với những phương trình khi lựa chọn ẩn phụ cho một biểu thức thì các biểu thức còn lại không biểu diễn được triệt để qua ẩn phụ đó hoặc nếu biểu diễn được thì công thức biểu diễn lại quá phức tạp. Sau khi biểu diễn ta thường được phương trình bậc hai theo ẩn phụ (hoặc vẫn theo ẩn x) có biệt số ∆ là một số chính phương. Tìm mối liên hệ giữa ẩn phụ và x sau đó thế trở lại để tìm x.

Nguồn: toanmath.com

Đọc Sách

Bài toán GTLN - GTNN biểu thức mũ - lôgarit nhiều biến số
Tài liệu gồm 36 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán GTLN – GTNN biểu thức mũ – lôgarit nhiều biến số; đây là dạng toán VDC thường gặp trong chương trình Toán 12 phần Giải tích chương 2. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT HAI BIẾN SỐ Cách 1: Đánh giá áp dụng BĐT cơ bản đã biết như BĐT Côsi và BĐT Bunhiacopxki. Cách 2: Áp dụng phương pháp hàm số, hàm đặc trưng. Thông thường ta thực hiện theo các bước sau: Biến đổi các số hạng chứa trong biểu thức về cùng một đại lượng giống nhau. Đưa vào một biến mới t bằng cách đặt t bằng đại lượng đã được biến đổi như trên. Xét hàm số f t theo biến t. Khi đó ta hình thành được bài toán tương đương sau: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Lúc này ta sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Chú ý : Ta chứng minh được: Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D mà phương trình fx k có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và hàm số y gx luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D mà phương trình f x gx có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì fx fy nếu x y (hoặc x y). Cách 3: Áp dụng hình học giải tích. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT NHIỀU BIẾN SỐ Cho xyz lần lượt là các số thực dương và thỏa mãn hệ phương trình sau 3log 3 3log 27 log 81 0 x y 3 3 x z xy yz. Khi biểu thức 5 4 P xyz đạt giá trị nhỏ nhất thì giá trị của 1000P nằm trong khoảng nào? Cho các số thực không âm abc thỏa mãn 2484 abc. Gọi M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S a b c 2 3. Giá trị của biểu thức 4 log M M m bằng? Cho ba số thực thay đổi abc 1 thỏa mãn abc 6. Gọi 1 2 x x là hai nghiệm của phương trình 2 log 2 log 3log log 2022 0 a a aa x b cx. Khi đó giá trị lớn nhất của 1 2 x x là?
Tìm điều kiện của x để bất phương trình mũ - lôgarit đúng với y thỏa mãn điều kiện
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Tìm điều kiện của x để bất phương trình mũ – lôgarit đúng với y thỏa mãn điều kiện cho trước; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng f a f b f a f b f a f b f a f b. Bước 2 : Xét hàm số y f x chứng minh hàm số luôn đồng biến, hoặc luôn nghịch biến Bước 3 : Do tính chất đồng biến hoặc nghịch biến của hàm số f a f b a b nếu hàm số đồng biến f a f b a b nếu hàm số nghịch biến. Cho các số nguyên dương x y không lớn hơn 4022. Biết mỗi giá trị của y luôn có ít nhất 2021 giá trị của x thỏa mãn bất phương trình 2 2 3 3 log 3 3 x y y x y xx y. Hỏi có bao nhiêu giá trị của y? Có bao nhiêu số nguyên dương y sao cho ứng với mỗi giá trị của y bất phương trình log 11 log 0 3 3 x x y x có nghiệm nguyên x và có không quá 10 số nguyên x thỏa mãn? Cho các số x y a thoả mãn 1 2048 1 x y a và 1 2 2 log 1 2 2 1 x a a x xy x y x a y a. Có bao nhiêu giá trị của a 100 để luôn có 2048 cặp số nguyên x y? Gọi S là tập tất cả các giá trị nguyên của y để bất phương trình 2 3 2 2 2 log 3 3 log 3 log y xy xy y. Có bao nhiêu giá trị nguyên của x để tập hợp S có đúng 9 phần tử?
Đồ thị hàm hợp chứa mũ - lôgarit
Tài liệu gồm 17 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Đồ thị hàm hợp chứa mũ – lôgarit; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. Cho hàm số y f x liên tục trên và có đồ thị hàm số y f x được mô tả như hình vẽ bên. Phương trình 2 f x x x 2 1 2ln 1 có bao nhiêu nghiệm phân biệt biết rằng f 0 1 và y f x là hàm đa thức? Cho hàm số bậc bốn f x có đồ thị như hình vẽ sau. Có bao nhiêu giá trị nguyên của m thuộc [-2021;2021] để phương trình sau có hai nghiệm dương phân biệt? Cho hàm số y f x là hàm số chẵn trên tập số thực và có đồ thị như hình vẽ. Biết rằng tồn tại các giá trị của tham số m để phương trình 2 2 2 3 3 4 3 3 3 3 0 f x f x m f x m có đúng 7 nghiệm thực phân biệt. Tổng lập phương các giá trị đó của m là? Cho hàm số y f x có đạo hàm trên và có bảng biến thiên sau: Có bao nhiêu giá trị nguyên của m để phương trình sau có đúng 2 nghiệm phân biệt? Cho hàm số y f x có đồ thị như hình vẽ. Biết f 3 10. Có bao nhiêu giá trị nguyên của m để phương trình 2 x f f f e m có bốn nghiệm.
Các dạng toán về đồ thị hàm số lũy thừa - mũ - lôgarit
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Các dạng toán về đồ thị hàm số lũy thừa – mũ – lôgarit; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. a/ Hàm số lũy thừa y x (là hằng số) Số mũ α Hàm số y x Tập xác định D n (n nguyên dương) n y x D n (n nguyên dương âm hoặc n 0) n y x D 0 là số thực không nguyên y x D 0. Lưu ý: Hàm số 1 n y x không đồng nhất với hàm số n y x n. b/ Hàm số mũ 0 1 x y a a a. Tập xác định: D. Tập giá trị: T 0. Tính đơn điệu Nhận trục hoành làm tiệm cận ngang. Dạng đồ thị. c/ Hàm số logarit log 0 1 a y x a a Tập xác định: D 0 Tập giá trị: T Tính đơn điệu Nhận trục tung làm tiệm cận đứng. Dạng đồ thị: Khi hàm số đồng biến. Khi hàm số nghịch biến. Gọi A và B là các điểm lần lượt nằm trên các đồ thị hàm số 2 y x log và 1 2 y x log sao cho điểm M 2 0 là trung điểm của đoạn thẳng AB. Diện tích tam giác OAB là bao nhiêu biết rằng O là gốc tọa độ? Với a 1. Biết trên đồ thị của ba hàm số log 2log 3log a a a y x y x y x lần lượt có 3 điểm A B C sao cho tam giác ABC vuông cân tại B AB song song với trục hoành và có diện tích bằng 18. Giá trị của a bằng? Cho hàm số 2 x y và 2 2 x y có đồ thị lần lượt là C1 C2 như hình vẽ. Gọi A là điểm thuộc C1 B C là các điểm thuộc C2 sao cho tam giác ABC là tam giác đều và AB song song với Ox. Khi đó tọa độ điểm C là p q giá trị của biểu thức 2 p q bằng?