Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 2 Toán 9 năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2023 – 2024 trường THCS Giảng Võ – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Một mảnh đất có dạng hình chữ nhật. Nếu tăng chiều dài thêm 3 m và giảm chiều rộng 2 m thì diện tích mảnh đất không đổi. Nếu tăng mỗi chiều thêm 1 m thì diện tích mảnh đất sẽ tăng thêm 23 m2. Tính chiều dài và chiều rộng của mảnh đất. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ đường tròn tâm O với đường kính BC cắt các đoạn thẳng AB, AC lần lượt tại các điểm M và N. Gọi H là giao điểm của hai đường thẳng BN và CM. 1) Chứng minh tứ giác AMHN là tứ giác nội tiếp. 2) Chứng minh NA.NC = NH.NB. 3) Lấy I là trung điểm của đoạn thẳng MN. Gọi E là giao điểm của đường thẳng MN và tiếp tuyến của đường tròn (O) tại điểm C. Đường thẳng đi qua điểm C và song song với BN cắt đường thẳng AB tại điểm K. Chứng minh NIC = EOC và ba điểm O, E, K là ba điểm thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2021 - 2022 trường Tạ Quang Bửu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS và THPT Tạ Quang Bửu, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 03 năm 2022. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một cửa hàng có tổng cộng 28 chiếc tivi và tủ lạnh. Giá mỗi cái tủ lạnh là 15 triệu đồng, mỗi cái tivi là 30 triệu đồng. Nếu bán hết 28 cái tivi và tủ lạnh này chủ cửa hàng sẽ thu được 720 triệu đồng. Hỏi cửa hàng có bao nhiêu cái tivi và tủ lạnh? + Cho nửa đường tròn (O), đường kính AB. Lấy hai điểm C, M bất kỳ thuộc nửa đường tròn sao cho AC = CM (AC và CM khác MB). Gọi D là giao điểm của AC và BM; H là giao điểm của AM và BC. 1. Chứng minh: Tứ giác CHMD nội tiếp. 2. Chứng minh: DA.DC = DB.DM. 3. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại K. Chứng minh rằng: KD. Gọi Q là giao điểm của DH và AB. Chứng minh rằng: khi điểm C di chuyển trên nửa đường tròn sao cho AC = CM thì đường tròn ngoại tiếp CMQ luôn đi qua một điểm cố định. + Chọn đáp án đúng trong mỗi câu sau (học sinh ghi vào giấy thi phương án lựa chọn. Ví dụ: câu 1 chọn đáp án A, ghi là: 1A).