Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 12 môn Toán năm 2019 2020 trường Thuận Thành 3 Bắc Ninh

Nội dung Đề thi giữa học kì 1 (HK1) lớp 12 môn Toán năm 2019 2020 trường Thuận Thành 3 Bắc Ninh Bản PDF Chiều thứ Sáu ngày 08 tháng 12 năm 2019, trường THPT Thuận Thành số 3, tỉnh Bắc Ninh tổ chức kiểm tra chất lượng giữa học kỳ 1 môn Toán lớp 12 năm học 2019 – 2020. Đề thi giữa học kỳ 1 Toán lớp 12 năm 2019 – 2020 trường Thuận Thành 3 – Bắc Ninh mã đề 136 được biên soạn theo dạng đề trắc nghiệm khách quan, đề gồm có 08 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, nội dung đề xoay quanh các kiến thức Toán lớp 12 học sinh đã được học. Trích dẫn đề thi giữa học kỳ 1 Toán lớp 12 năm 2019 – 2020 trường Thuận Thành 3 – Bắc Ninh : + Biết chi phí tối thiểu để học đại học tại thành phố Hà Nội là 8 triệu đồng một tháng. Trong đó học phí là 5 triệu đồng một tháng. Biết rằng sau mỗi năm học (mỗi năm có 10 tháng học), học phí tăng 10% và các chi phí khác tăng 5%. Hỏi chi phí tối thiểu sau 4 năm học đại học tại thành phố Hà Nội là bao nhiêu? + Một người thợ nhôm kính nhận đơn đặt hàng làm một bể cá cảnh bằng kính dạng hộp chữ nhật không có nắp có thể tích bằng 3,2(m3), tỉ số giữa chiều cao của bể và chiều rộng của đáy bằng 2 (như hình vẽ). Biết giá một mét vuông kính để làm thành và đáy bể cá là 800 nghìn đồng. Hỏi người thợ đó cần tối thiểu bao nhiêu tiền để mua đủ mét vuông kính làm bể cá theo yêu cầu (coi độ dày của kính là không đáng kể so với kích thước của bể). + Cho hình chóp tứ giác đều S.ABCD có SA = a và góc SAB = 11π/24. Gọi Q là trung điểm cạnh SA. Trên các cạnh SB, SC, SD lần lượt lấy các điểm M, N, P không trùng với các đỉnh của hình chóp.Tìm giá trị nhỏ nhất của tổng AM + MN + NP + PQ theo a. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa học kỳ I lớp 12 môn Toán năm 2018 2019 trường THPT B Nghĩa Hưng Nam Định
Nội dung Đề thi giữa học kỳ I lớp 12 môn Toán năm 2018 2019 trường THPT B Nghĩa Hưng Nam Định Bản PDF Đề thi giữa học kỳ I Toán lớp 12 năm 2018 – 2019 trường THPT B Nghĩa Hưng – Nam Định mã đề 485 gồm 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu học sinh làm bài trong thời gian 90 phút, đề nhằm giúp nhà trường và giáo viên đánh giá năng lực của từng học sinh theo từng giai đoạn của năm học, để có phương pháp giáo dục phù hợp với từng đối tượng học sinh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kỳ I Toán lớp 12 năm 2018 – 2019 trường THPT B Nghĩa Hưng – Nam Định : + Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Khẳng định nào sau đây đúng? A. Đồ thị hàm số có 3 đường tiệm cận. B. Đồ thị hàm số không có tiệm cận. C. Hàm số có giá trị lớn nhất bằng 1 và có giá trị nhỏ nhất bằng 0. D. Hàm số nghịch biến trên các khoảng (−∞;0) và (0;+∞). [ads] + Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AC = a√2, biết SA vuông góc với mặt đáy, SA = a. Gọi G là trọng tâm của tam giác SBC, (α) là mặt phẳng đi qua AG và song song với BC cắt SB, SC lần lượt tại M và N. Tính thể tích V của khối đa diện AMNBC. + Gọi M là giá trị lớn nhất của hàm số y = |x^3 – 3x^2 + x + m| xét trên đoạn [2;4], m0 là giá trị của tham số m để M đạt giá trị nhỏ nhất. Mệnh đề nào sau đây đúng?
Đề thi giữa học kì 1 (HK1) lớp 12 môn Toán năm 2018 2019 trường THPT Bình Sơn Đồng Nai
Nội dung Đề thi giữa học kì 1 (HK1) lớp 12 môn Toán năm 2018 2019 trường THPT Bình Sơn Đồng Nai Bản PDF Đề thi giữa học kỳ 1 Toán lớp 12 năm 2018 – 2019 trường THPT Bình Sơn – Đồng Nai mã đề 132 là đề dành cho khối lớp cơ bản, đề chỉ giới hạn phần kiến thức Toán lớp 12: hàm số và đồ thị, khối đa diện và thể tích của chúng, một phần chương hàm số lũy thừa, mũ và logarit, đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài dành cho học sinh là 90 phút. Trích dẫn đề thi giữa học kỳ 1 Toán lớp 12 năm 2018 – 2019 trường THPT Bình Sơn – Đồng Nai : + Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai? A. Mỗi cạnh là cạnh chung của ít nhất ba mặt. B. Mỗi mặt có ít nhất ba cạnh. C. Mỗi đỉnh là đỉnh chung của ít nhất ba cạnh. D. Mỗi đỉnh là đỉnh chung của ít nhất ba mặt. [ads] + Cho hàm số y = x^(-3/4). Khẳng định nào sau đây sai? A. Đồ thị hàm số nhận trục tung làm tiệm cận đứng. B. Đồ thị hàm số nhận trục hoành làm tiệm cận ngang. C. Đồ thị hàm số luôn đi qua gốc tọa độ O(0;0). D. Là hàm số nghịch biến trên (0;+∞). + Mỗi hình sau đây gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình nào sau đây không phải là hình đa diện? File WORD (dành cho quý thầy, cô):
Đề thi chất lượng 8 tuần học kì 1 (HK1) năm học 2017 2018 lớp 12 môn Toán trường THPT A Hải Hậu Nam Định
Nội dung Đề thi chất lượng 8 tuần học kì 1 (HK1) năm học 2017 2018 lớp 12 môn Toán trường THPT A Hải Hậu Nam Định Bản PDF Đề thi chất lượng 8 tuần HK1 năm học 2017 – 2018 môn Toán lớp 12 trường THPT A Hải Hậu – Nam Định gồm 40 câu hỏi trắc nghiệm, thời gian làm bài 60 phút, đề thi có đáp án . Trích dẫn đề thi : + Xét khối chóp S.ABC có đáy là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cosα khi thể tích khối chóp S.ABC nhỏ nhất. A. cosα = 1/3 B.  cosα = √3/3 C. cosα = √2/2 D.  cosα = 2/3 [ads] + Cần bắc một chiếc thang tựa vào tường tại vị trí C và mặt đất tại vị trí A thông qua một cột đỡ có đỉnh là vị trí B. Cột đỡ có chiều cao 3√3 m và khoảng cách từ tường đến cột đỡ bằng 1 m, như hình vẽ bên. Hỏi chiều dài ngắn nhất có thể có của chiếc thang là bao nhiêu? A. 8 m B. 1 + 3√3 m C. 7 m D. 6 m + Kết luận nào sau đây về tính đơn điệu của hàm số y = (2x + 1)/(x + 1) là đúng? A. Hàm số đồng biến trên R\{-1} B. Hàm số nghịch biến trên các khoảng (–∞; –1) và (–1; +∞) C. Hàm số đồng biến trên R D. Hàm số đồng biến trên các khoảng (–∞; –1) và (–1; +∞)
Đề thi giữa học kì 1 môn Toán lớp 12 Trường THCS Nguyễn Cảnh Chân năm 2021 - 2022