Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Tạ Quang Bửu TP HCM

Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Tạ Quang Bửu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 1 Toán lớp 10 năm 2022 – 2023 trường THPT Tạ Quang Bửu – TP HCM : + Dự báo thời tiết ngày 01/5/2021 tại Thành phố Hồ Chí Minh được cho trong bảng sau: Giờ 1 4 7 10 13 16 19 22 Nhiệt độ (oC) 28 27 28 32 31 29 28 27. Biết rằng bảng dữ liệu dự báo thời tiết là một hàm số, hãy tìm tập xác định của hàm số đó? + Các nhà khảo cổ học tìm được một mảnh chiếc đĩa cổ hình tròn bị vỡ. Để xác định đường kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên vành đĩa và tiến hành đo đạc thu được kết quả như sau: 0 BC 28 cm BAC 120 (Hình vẽ). Tính đường kính của chiêc đĩa (làm tròn kết quả đến hàng phần nghìn). + Tính diện tích một lá cờ hình tam giác cân. Biết lá cờ đó có chiều dài cạnh bên là 32 cm và góc ở đáy có số đo là 48˚ (làm tròn kết quả đến hàng phần nghìn). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tạ Quang Bửu - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tạ Quang Bửu – TP HCM : + Tìm các giá trị của tham số m để phương trình x^2 – (m – 1)x + m – 1 = 0 có nghiệm kép. + Giải và biện luận phương trình (m^2 – 4)x = m + 2 theo tham số m. + Trong mặt phẳng tọa độ Oxy, cho a = (2;-5), b = (1;3), c = (3;4). Phân tích c theo hai véctơ a và b.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Cho a >= b. Chứng minh: a3 – b3 >= 3ab(a – b). + Cho tứ giác ABCD. Gọi E; F; I lần lượt là trung điểm AB; CD; EF. a) Chứng minh: AD + BC = 2EF. b) Gọi H; K lần lượt là trung điểm AD; BC. Tính: |IH + IK|. + Cho tam giác ABC có AB = 3, AC = 5, BAC = 120 độ. M thuộc cạnh BC sao cho BM = 2/7BC. a) Tính diện tích S và bán kính đường tròn ngoại tiếp R của tam giác ABC. b) Tính BA.BC và độ dài AM.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Bạn Nhi dùng 60 m lưới B40 rào thành một mảnh vườn hình chữ nhật để trồng hoa tết. Biết rằng một cạnh của vườn là bờ sông nên Nhi chỉ cần rào 3 cạnh còn lại của mảnh vườn hình chữ nhật. Theo em, bạn Nhi nên tính toán các kích thước của mảnh vườn như thế nào để diện tích trồng hoa là lớn nhất? Tính diện tích lớn nhất đó. + Xác định parabol (P): y = ax2 + bx + 2 biết (P) đi qua điểm A(2;4) và (P) nhận đường thẳng x = 5/6 làm trục đối xứng. + Tính diện tích tam giác MNP trong hình vẽ sau (biết G là trọng tâm của tam giác).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Trần Nhân Tông - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Trần Nhân Tông – TP HCM : + Trong mặt phẳng toạ độ Oxy cho ba điểm A(4;2), B(-2;0), C(2;4). Chứng minh tam giác ABC vuông. + Trong mặt phẳng toạ độ Oxy cho ba điểm A(0;1 + √3), B(2;1 + √3) và đường thẳng (d): 3x – y – 2 = 0. Tìm điểm C trên đường thẳng (d) sao cho tam giác ABC là tam giác đều. + Cho phương trình x^2 – 2(1 – m)x – 4m + 4 = 0. Tìm điều kiện của tham số m để phương trình có hai nghiệm x1 và x2 thỏa mãn (x1 – x2)^2 + x1x2 = 16.