Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán ôn thi THPTQG 2019 trường THPT chuyên Lam Sơn Thanh Hóa lần 2

Theo đúng như kế hoạch đã đề ra, sáng Chủ Nhật ngày 03 tháng 03 năm 2019, thầy và trò trường THPT chuyên Lam Sơn, Thanh Hóa đã tổ chức đợt thi thử THPT Quốc gia môn Toán lần thứ hai năm học 2018 – 2019. Kỳ thi nhằm giúp nhà trường và giáo viên nắm rõ chất lượng học sinh khối 12 trong quá trình các em ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi KSCL Toán ôn thi THPTQG 2019 trường THPT chuyên Lam Sơn – Thanh Hóa lần 2 có mã đề 201, đề gồm 06 trang với 50 câu trắc nghiệm, học sinh làm bài thi Toán trong 90 phút, đề bám sát cấu trúc đề minh họa THPT Quốc gia 2019 môn Toán do Bộ Giáo dục và Đào tạo quy định. [ads] Trích dẫn đề thi KSCL Toán ôn thi THPTQG 2019 trường THPT chuyên Lam Sơn – Thanh Hóa lần 2 : + Cho lưới ô vuông đơn vị, kích thước 4×6 như sơ đồ hình vẽ bên. Một con kiến bò từ A, mỗi lần di chuyển nó bò theo một cạnh của hình vuông đơn vị để tới mắt lưới liền kề. Có tất cả bao nhiêu cách thực hiện hành trình để sau 12 lần di chuyển, nó dừng lại ở B?. + Một phần sân trường được định vị bởi các điểm A, B, C, D như hình vẽ. Bước đầu chúng được lấy “thăng bằng” để có cùng độ cao, biết ABCD là hình thang vuông ở A và B với độ dài AB = 25m, AD = 15m, BC = 18m. Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở C nên người ta lấy độ cao ở các điểm B, C, D xuống thấp hơn so với độ cao ở A là 10 cm, a cm, 6 cm tương ứng. Giá trị của a là số nào sau đây? + Cho tam giác SAB vuông tại A, góc ABS = 60°. Phân giác của góc ABS cắt SA tại I. Vẽ nửa đường tròn tâm I, bán kính A (như hình vẽ). Cho miền tam giác SAB và nửa hình tròn quay xung quanh trục SA tạo nên các khối tròn xoay thể tích tương ứng là V1, V2. Khẳng định nào sau đây đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường chuyên Trần Phú - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT Quốc gia năm học 2023 – 2024 lần 2 trường THPT chuyên Trần Phú, thành phố Hải Phòng; đề thi có đáp án trắc nghiệm mã đề 001 002 003 004 005 006 007 008 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường chuyên Trần Phú – Hải Phòng : + Cho hai đường tròn (O1;5) và (O2;3) cắt nhau tại hai điểm A B sao cho AB là một đường kính của đường tròn (O2;3). Gọi (D) là phần hình phẳng giới hạn bởi hai đường tròn (ở ngoài đường tròn lớn, phần tô dấu chấm như hình vẽ). Quay (D) quanh trục O O1 2 ta được một khối tròn xoay. Tính thể tích V của khối tròn xoay được tạo thành. + Từ một mảnh bìa hình chữ nhật ABCD có đường chéo AC = 1, ta lấy M là trung điểm của BC, N là điểm trên cạnh AD sao cho AD AN 4. Sau đó người ta cuốn mảnh bìa lại sao cho cạnh AB trùng với cạnh CD tạo thành một hình trụ. Tìm độ dài cạnh BC của tấm bìa sao cho thể tích của tứ diện ABMN đạt giá trị lớn nhất (với các đỉnh ABM N nằm trên hình trụ vừa tạo thành). + Cho hàm số đa thức bậc bốn y fx biết hàm số có ba điểm cực trị x5. Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho hàm số 3 x gx fe m có đúng 7 điểm cực trị?
Đề thi thử Toán TN THPT 2024 lần 3 trường THPT Nguyễn Quán Nho - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 3 trường THPT Nguyễn Quán Nho, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử Toán TN THPT 2024 lần 3 trường THPT Nguyễn Quán Nho – Thanh Hóa : + Cho hàm số bậc bốn y fx có đồ thị (C) như hình vẽ bên. Biết hàm số y fx đạt cực trị tại các điểm 123 x thỏa mãn 3 1 x 2 và (C) nhận đường thẳng 2 dx làm trục đối xứng. Gọi 1S là diện tích của các miền hình phẳng được đánh dấu như hình bên. Tỉ số 1 2 3 4 S gần kết quả nào nhất. + Cho một miếng tôn hình tròn tâm O bán kính R. Cắt bỏ một phần miếng tôn theo một hình quạt OAB và gò phần còn lại thành một hình nón đỉnh O không có đáy (OA trùng với OB). Tìm số đo góc ở tâm của mảnh tôn cắt bỏ để thể tích của khối nón đạt giá trị lớn nhất. + Một hộp đựng 15 tấm thẻ được đánh số từ 1 đến 15. Chọn ngẫu nhiên 6 tấm thẻ trong hộp. Xác suất để tổng các số ghi trên 6 tấm thẻ được chọn là một số lẻ bằng?
Đề thi thử TN THPT 2024 lần 1 môn Toán trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi. Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường chuyên Lê Khiết – Quảng Ngãi : + Cho tứ diện ABCD có ABC, ABD, ACD là các tam giác vuông tương ứng tại A B C. Góc giữa AD và ABC bằng 45 AD BC và khoảng cách giữa AD và BC bằng a. Tính thể tích khối tứ diện ABCD. + Trong không gian Oxyz cho mặt cầu S x y z 2 3 24 cắt mặt phẳng 0 x y theo giao tuyến là đường tròn C. Tìm hoành độ của điểm M thuộc đường tròn C sao cho khoảng cách từ M đến A6 10 3 lớn nhất. + Cho hình nón đỉnh S có đáy là đường tròn tâm O, thiết diện qua trục là tam giác đều. Mặt phẳng P đi qua S và cắt đường tròn đáy tại A B sao cho AOB 120. Biết rằng khoảng cách từ O đến P bằng 3 13 a. Thể tích của khối nón đã cho bằng?
Đề thi thử tốt nghiệp THPT 2024 môn Toán lần 1 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2024 môn Toán lần 1 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử tốt nghiệp THPT 2024 môn Toán lần 1 sở GD&ĐT Bình Phước : + Cho hàm số 4 2 y f x ax bx c có đồ thị C biết rằng C đi qua điểm A 10 tiếp tuyến d tại A của C cắt C tại hai điểm có hoành độ lần lượt là 0 và 2. Khi diện tích hình phẳng giới hạn bởi d đồ thị C và hai đường thẳng x 0 x 2 có diện tích bằng 285 (phần gạch sọc) thì 1 f xd bằng? + Cho hàm số 4 2 f x ax bx a a b 1 mà đồ thị hàm số f x và đồ thị hàm số f x có một điểm chung duy nhất và nằm trên Oy (hình vẽ bên dưới), trong đó 1 x là nghiệm của f x và 2 x là nghiệm của f x 1 2 x 0 0. Biết 1 2 x 3 tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số f x và trục Ox. + Trong không gian Oxyz cho A 002 B 345. Xét điểm M thay đổi thỏa mãn các điều kiện khoảng cách từ A đến đường thẳng OM bằng 6 5 và độ dài đoạn thẳng OM 5. Gọi M m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của độ dài đoạn thẳng MB. Khi đó M m bằng?