Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề tam giác

Tài liệu gồm 48 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề tam giác trong chương trình Hình học 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề tam giác: BÀI 8 . TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Dạng 1. Tính số đo góc của một tam giác. + Dạng 2. Nhận biết một tam giác vuông, tìm các góc bằng nhau trong hình vẽ có tam giác vuông. + Dạng 3. Chứng minh hai đường thẳng song song bằng cách chứng minh hai góc bằng nhau. + Dạng 4. So sánh các góc dựa vào tính chất góc ngoài của tam giác. BÀI 9 . HAI TAM GIÁC BẰNG NHAU. + Dạng 1. Từ hai tam giác bằng nhau, xác định các cạnh bằng nhau, các góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Dạng 2. Viết kí hiệu về sự bằng nhau của hai tam giác. BÀI 10 . TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH – CẠNH – CẠNH (C.C.C). + Dạng 1. Vẽ tam giác biết độ dài ba cạnh. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh- cạnh- cạnh. Sắp xếp lại trình tự lời giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 3. Sử dụng trường hợp bằng nhau cạnh- cạnh- cạnh để chứng minh hai góc bằng nhau. BÀI 11 . TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC CẠNH – GÓC – CẠNH (C.G.C). + Dạng 1. Vẽ tam giác biết hai cạnh và góc xen giữa. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. + Dạng 3. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. Sắp xếp lại trình tự giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 4. Sử dụng trường hợp bằng nhau cạnh – góc – cạnh để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 12 . TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC GÓC – CẠNH – GÓC (G.C.G). + Dạng 1. Vẽ tam giác biết một cạnh và hai góc kề. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Dạng 3. Sử dụng trường hợp bằng nhau góc – cạnh – góc. + Dạng 4. Sử dụng nhiều trường hợp bằng nhau của tam giác. + Dạng 5. Tìm hoặc chứng minh hia tam giác vuông bằng nhau. + Dạng 6. Sử dụng trường hợp bằng nhau cạnh huyền – góc nhọn để chứng minh hai đoạn thẳng bằng nhau. [ads] BÀI 13 . TAM GIÁC CÂN. + Dạng 1. Vẽ tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 2. Bổ sung điều kiện để hai tam giác, hai tam giác vuông cân, hai tam giác đều bằng nhau. + Dạng 3. Nhận biết một tam giác là tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Sử dụng định nghĩa tam giác cân, vuông cân, đều để suy ra các đoạn thẳng bằng nhau. + Dạng 5. Sử dụng tính chất của các tam giác cân, vuông cân, đều để tính số đo góc hoặc chứng minh hai góc bằng nhau. + Dạng 6. Chứng minh một tam giác là tam giác cân, vuông cân, đều để suy ra hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 14 . ĐỊNH LÝ PY – TA – GO. + Dạng 1. Tính độ dài một cạnh của tam giác vuông. + Dạng 2. Sử dụng định lý py-ta-go đảo để nhận biết tam giác vuông. BÀI 15 . CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. + Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác vuông bằng nhau. + Dạng 3. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. ÔN TẬP CHƯƠNG 2. + Dạng 1. Chọn câu phát biểu đúng, cho một hệ quả, tìm định lí trực tiếp suy ra hệ quả đó. + Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh hai đoạn thằng bằng nhau, hai góc bằng nhau; từ đó nhận biết tia phân giác của góc, đường trung trực của đoạn thẳng, hai đường thẳng vuông góc. + Dạng 3. Nhận biết tam giác vuông, tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Tính độ dài cạnh của tam giác vuông.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính chất ba đường cao trong tam giác
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường cao trong tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Nắm được khái niệm về đường cao của tam giác, tính chất ba đường cao trong tam giác và các đường đồng quy trong tam giác cân. Kĩ năng: + Vận dụng được các tính chất của đường cao để giải toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định trực tâm của tam giác. Để xác định trực tâm của tam giác, ta đi tìm giao điểm của hai đường cao trong tam giác đó. Dạng 2 : Chứng minh hai đường thẳng vuông góc. Cách 1. Sử dụng tính chất ba đường cao trong tam giác đồng quy tại một điểm. Cách 2. Sử dụng định lí trong tam giác cân thì đường trung tuyến, đường phân giác ứng với cạnh đáy đồng thời là đường cao. Cách 3. Hai đường thẳng song song với nhau thì cùng vuông góc với đường thẳng thứ ba. Dạng 3 : Các bài toán tổng hợp. Sử dụng tính chất ba đường cao trong tam giác đồng quy tại một điểm.
Chuyên đề tính chất ba đường trung trực của tam giác
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường trung trực của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Nắm được tính chất đường trung trực của tam giác cân. + Nắm được tính chất ba đường trung trực tam giác. Kĩ năng: + Vận dụng tính chất ba đường trung trực của tam giác để giải toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định tâm đường tròn ngoại tiếp tam giác. + Giao điểm các đường trung trực trong tam giác thì cách đều ba đỉnh của tam giác đó. + Ba đường trung trực trong tam giác cắt nhau tại một điểm. Do đó để xác định tâm đường tròn ngoại tiếp tam giác, ta đi xác định giao điểm của hai đường trung trực. Dạng 2 : Vận dụng tính chất ba đường trung trực trong tam giác để giải quyết các bài toán khác. Trong một tam giác, giao điểm của hai đường trung trực thuộc đường trung trực còn lại của tam giác đó. Dạng 3 : Chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng. Sử dụng tính chất: “Ba đường trung trực trong tam giác cắt nhau tại một điểm”.
Chuyên đề tính chất đường trung trực của một đoạn thẳng
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất đường trung trực của một đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định lí thuận và đảo về tính chất các điểm thuộc đường trung trực. Kĩ năng: + Vận dụng được các định lí để giải toán. + Ứng dụng trong một số bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Vận dụng tính chất của đường trung trực. Sử dụng định lí 1: “Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó”. Dạng 2 : Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. – Để chứng minh điểm M thuộc đường trung trực của đoạn thẳng AB, ta dùng định lí 2: “Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó” hoặc dùng định nghĩa đường trung trực. – Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm cách đều A và B, hoặc dùng định nghĩa đường trung trực. Dạng 3 : Xác định vị trí của điểm thỏa mãn yêu cầu đề bài. Sử dụng định lí 2: “Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó” để xác định một điểm nằm trên đường trung trực của đoạn thẳng. Dạng 4 : Sử dụng tính chất đường trung trực vào bài toán về cực trị. – Sử dụng tính chất đường trung trực để thay đổi độ dài một đoạn thẳng bằng độ dài một đoạn thẳng khác bằng nó. – Sử dụng bất đẳng thức tam giác để tìm giá trị nhỏ nhất, giá trị lớn nhất.
Chuyên đề tính chất ba đường phân giác của tam giác
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường phân giác của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa đường phân giác của tam giác, tính chất đường phân giác trong tam giác cân. + Phát biểu được định lí về ba đường phân giác của tam giác. Kĩ năng: + Vận dụng được các định nghĩa, định lí để chứng minh các tính chất hình học. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Từ đó tính độ dài đoạn thẳng, số đo góc. Sử dụng các tính chất: + Giao điểm của hai đường phân giác của một tam giác nằm trên đường phân giác thứ ba của tam giác đó. + Giao điểm các đường phân giác của tam giác cách đều ba cạnh của tam giác. Dạng 2 : Chứng minh ba đường đồng quy, ba điểm thẳng hàng. Vận dụng tính chất ba đường phân giác của tam giác: “Ba đường phân giác của một tam giác cùng đi qua một điểm. Điểm này cách đều ba cạnh của tam giác đó”. Dạng 3 : Đường phân giác của các tam giác đặc biệt. Sử dụng tính chất trong tam giác cân, đường phân giác của góc ở đỉnh cũng đồng thời là đường trung tuyến, đường cao. Dạng 4 : Chứng minh mối quan hệ trong các góc. – Vận dụng các tính chất đường phân giác của một góc để tìm mối quan hệ giữa các góc. – Dùng định lí tổng ba góc trong một tam giác bằng o 180.