Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Nguyễn Huệ Nam Định

Nội dung Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Nguyễn Huệ Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng cuối học kì 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Nguyễn Huệ, tỉnh Nam Định; đề thi có đáp án và thang điểm. Trích dẫn Đề học kì 1 Toán lớp 11 năm 2023 – 2024 trường THPT Nguyễn Huệ – Nam Định : + Một quả bóng cao su được thả từ độ cao 64 m xuống mặt đất. Sau mỗi lần chạm đất, quả bóng nảy lên độ cao bằng 1 2 độ cao của lần rơi trước đó. Giả sử rằng quả bóng luôn chuyển động vuông góc với mặt đất và quá trình này tiếp diễn vô hạn lần. Đúng lần chạm đất thứ 7, quả bóng đã đi được tổng quãng đường dài bao nhiêu mét (bao gồm tổng quãng đường quả bóng rơi xuống và nảy lên). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. M là trung điểm của SB. a) Chứng minh rằng đường thẳng SD song song với mặt phẳng (MAC). b) Tìm giao tuyến của hai mặt phẳng (SAB) và (MCD). c) Gọi E là điểm thuộc cạnh SC sao cho SE EC 3. Mặt phẳng (SAD) và đường thẳng ME cắt nhau tại I. Gọi 1 2 S S lần lượt là diện tích tam giác SMI và tứ giác BCEM. Tính 1 2 S S. + Một vệ tinh nhân tạo bay quanh Trái Đất theo quỹ đạo là một đường elip. Độ cao h (km) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức 550 450cos 50 h t trong đó t là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Tại thời điểm t = 150 (phút) thì vệ tinh cách bề mặt Trái Đất bao nhiêu km?

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.