Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập biểu thức đại số Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 272 trang, được tổng hợp bởi thầy giáo Nguyễn Bỉnh Khôi, bao gồm phân dạng và bài tập chủ đề biểu thức đại số trong chương trình môn Toán 8 sách Chân Trời Sáng Tạo. Chương 1 . ĐA THỨC NHIỀU BIẾN 2. Bài 1 . ĐƠN THỨC VÀ ĐA THỨC NHIỀU BIẾN 2. A Trọng tâm kiến thức 2. 1. Đơn thức nhiều biến và đơn thức thu gọn 2. 2. Đơn thức đồng dạng 2. 3. Đa thức nhiều biến. Đa thức thu gọn 2. 4. Bậc của đa thức 3. B Các dạng bài tập và phương pháp giải 3. + Dạng 1. Xác định đơn thức, đa thức 3. + Dạng 2. Tính tích các đơn thức 4. + Dạng 3. Xác định bậc của đơn thức 4. + Dạng 4. Tính giá trị của đơn thức 6. + Dạng 5. Nhận biết đơn thức đồng dạng 7. + Dạng 6. Cộng trừ các đơn thức đồng dạng 8. + Dạng 7. Tìm đơn thức thỏa mãn đẳng thức 9. + Dạng 8. Thu gọn đa thức 9. + Dạng 9. Tìm bậc của đa thức 10. + Dạng 10. Vận dụng 11. C Bài tập vận dụng 12. Bài 2 . CÁC PHÉP TOÁN VỚI ĐA THỨC NHIỀU BIẾN 18. A Trọng tâm kiến thức 18. 1. Phép cộng, trừ hai đa thức nhiều biến 18. 2. Phép nhân, chia hai đa thức nhiều biến 18. B Các dạng bài tập và phương pháp giải 19. + Dạng 1. Cộng trừ, nhân chia hai đa thức 19. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức 26. + Dạng 3. Bài toán liên quan đến chia hết 27. + Dạng 4. Rút gọn và tính giá trị của biểu thức 29. + Dạng 5. Tìm giá trị của biến x 32. + Dạng 6. Chứng minh giá trị của một biểu thức không phụ thuộc vào một biến nào đó 34. + Dạng 7. Chứng minh đẳng thức 35. + Dạng 8. Vận dụng 37. C Bài tập vận dụng 38. LUYỆN TẬP CHUNG 1 51. A Đơn thức 51. B Đa thức. Cộng trừ đa thức 57. C Phép nhân đa thức 63. D Phép chia đa thức 67. E Vận dụng 70. Bài 3 . NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ 74. A Trọng tâm kiến thức 74. B Các dạng bài tập và phương pháp giải 74. + Dạng 1. Vận dụng hằng đẳng thức để tính 74. + Dạng 2. Rút gọn và tính giá trị của biểu thức 76. + Dạng 3. Chứng minh giá trị của biểu thức không phụ thuộc vào các biến 78. + Dạng 4. Chứng minh đẳng thức 78. + Dạng 5. Tìm x thỏa mãn đẳng thức 79. + Dạng 6. Chứng minh chia hết 80. + Dạng 7. Chứng minh giá trị của một biểu thức luôn luôn dương (hay âm) với mọi giá trị của biến 80. + Dạng 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P (x) = ax2 + bx + c 81. + Dạng 9. Vận dụng 82. C Bài tập vận dụng 83. LUYỆN TẬP CHUNG 2 95. A Những hằng đẳng thức đáng nhớ 95. Bài 4 . VẬN DỤNG HẰNG ĐẲNG THỨC VÀO PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ 102. A Trọng tâm kiến thức 102. 1. Phương pháp đặt nhân tử chung 102. 2. Phương pháp nhóm hạng tử 102. 3. Phương pháp dùng hằng đẳng thức 102. B Các dạng bài tập và phương pháp giải 102. + Dạng 1. Phương pháp đặt nhân tử chung 102. + Dạng 2. Phương pháp nhóm các hạng tử 104. + Dạng 3. Phương pháp dùng hằng đẳng thức 107. + Dạng 4. Phối hợp các phương pháp thông thường 110. + Dạng 5. Phương pháp tách một hạng tử thành nhiều hạng tử 111. + Dạng 6. Phương pháp thêm bớt cùng một hạng tử 113. + Dạng 7. Phương pháp đổi biến 114. + Dạng 8. Tính giá trị của một biểu thức 115. + Dạng 9. Tìm x 118. + Dạng 10. Chứng minh giá trị của biểu thức A chia hết cho số k 122. + Dạng 11. Vận dụng 124. C Bài tập vận dụng 126. LUYỆN TẬP CHUNG 3 146. A Phân tích đa thức thành nhân tử 146. Bài 5 . PHÂN THỨC ĐẠI SỐ 165. A Trọng tâm kiến thức 165. 1. Phân thức đại số 165. 2. Tính chất cơ bản của phân thức 165. 3. Rút gọn phân thức 165. 4. Quy đồng mẫu nhiều phân thức 166. 5. Điều kiện xác định và giá trị của phân thức 166. B Các dạng bài tập và phương pháp giải 166. + Dạng 1. Nhận biết phân thức, xác định tử thức và mẫu thức 166. + Dạng 2. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 167. + Dạng 3. Hai phân thức bằng nhau 169. + Dạng 4. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức 171. + Dạng 5. Rút gọn phân thức 172. + Dạng 6. Chứng minh đẳng thức 172. + Dạng 7. Tính giá trị biểu thức 173. + Dạng 8. Chứng minh giá trị biểu thức không phụ thuộc vào biến 174. + Dạng 9. Tìm x thỏa mãn đẳng thức cho trước 175. + Dạng 10. Quy đồng mẫu thức 175. + Dạng 11. Vận dụng 177. C Bài tập vận dụng 178. Bài 6 . CỘNG, TRỪ PHÂN THỨC 185. A Trọng tâm kiến thức 185. 1. Cộng hai phân thức cùng mẫu thức 185. 2. Cộng hai phân thức có mẫu thức khác nhau 185. 3. Phân thức đối 185. 4. Phép trừ 185. B Các dạng bài tập và phương pháp giải 185. + Dạng 1. Cộng, trừ các phân thức cùng mẫu thức 185. + Dạng 2. Cộng, trừ các phân thức không cùng mẫu thức 187. + Dạng 3. Tìm x thõa mãn đẳng thức cho trước 189. + Dạng 4. Rút gọn và tính giá trị biểu thức 190. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Chứng minh đẳng thức 190. + Dạng 6. Vận dụng 191. C Bài tập vận dụng 193. Bài 7 . NHÂN, CHIA PHÂN THỨC 200. A Trọng tâm kiến thức 200. 1. Phép nhân các phân thức đại số 200. 2. Phân thức nghịch đảo 200. 3. Phép chia 200. B Các dạng bài tập và phương pháp giải 200. + Dạng 1. Thực hiện phép nhân, phép chia các phân thức 200. + Dạng 2. Rút gọn biểu thức 201. + Dạng 3. Tìm x thỏa mãn đẳng thức cho trước 203. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến 203. + Dạng 5. Vận dụng 204. C Bài tập tự luyện 206. LUYỆN TẬP CHUNG 212. A Trọng tâm kiến thức 212. B Các dạng bài tập và phương pháp giải 212. + Dạng 1. Tìm điều kiện của biến để phân thức xác định 212. + Dạng 2. Tìm giá trị của x để phân thức bằng 0 212. + Dạng 3. Rút gọn biểu thức 213. + Dạng 4. Vận dụng 214. C Bài tập vận dụng 215. ÔN TẬP CHƯƠNG I 221. A Đơn thức 221. B Đa thức. Cộng trừ đa thức 225. C Phép nhân đa thức 230. D Phép chia đa thức cho đơn thức 232. E Những hằng đẳng thức đáng nhớ 233. F Phân tích đa thức thành nhân tử 236. G Phân thức đại số. Các phép toán 241. 1. Bài tập rèn luyện 242. 2. Bài tập bổ sung 249.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải toán bằng cách lập phương trình
Nội dung Chuyên đề giải toán bằng cách lập phương trình Bản PDF - Nội dung bài viết Chuyên Đề Giải Toán Bằng Cách Lập Phương Trình Chuyên Đề Giải Toán Bằng Cách Lập Phương Trình Tài liệu này bao gồm 39 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, từ cơ bản đến nâng cao, trong chuyên đề giải toán bằng cách lập phương trình. Bạn sẽ được tuyển chọn các bài tập có độ khó phù hợp, và hỗ trợ trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. Kiến Thức Cần Nhớ Bước 1: Lập phương trình: Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. Biểu diễn các đại lượng chưa biết theo ẩn và đã biết. Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình. Bước 3: Kiểm tra nghiệm của phương trình để xác định nghiệm nào thỏa mãn điều kiện của ẩn. II. Bài Tập Minh Họa Phương pháp chung: Bước 1: Kẻ bảng nếu cần, gọi ẩn, kèm theo đơn vị và điều kiện cho ẩn. Bước 2: Giải thích từng ô trong bảng để lập phương trình bậc hai. Bước 3: Giải phương trình, đối chiếu điều kiện và trả lời bài toán. Các dạng toán: Dạng 1: Toán chuyển động. Dạng 2: Toán năng suất. Dạng 3: Toán làm chung công việc. Dạng 4: Toán có nội dung hình học. Dạng 5: Dạng toán có chứa tham số. Dạng 6: Toán về tỉ lệ chia phần. Dạng 7: Dạng toán liên quan đến số học. Dạng 8: Dạng toán có nội dung vật lý, hóa học. Hãy sẵn sàng thách thức bản thân và rèn luyện kỹ năng giải toán bằng cách lập phương trình với tài liệu hữu ích này!
Chuyên đề phương trình chứa ẩn ở mẫu
Nội dung Chuyên đề phương trình chứa ẩn ở mẫu Bản PDF - Nội dung bài viết Chuyên đề phương trình chứa ẩn ở mẫu Chuyên đề phương trình chứa ẩn ở mẫu Tài liệu này bao gồm 16 trang, tóm tắt lý thuyết cơ bản về phương trình chứa ẩn ở mẫu, hướng dẫn cách phân dạng và giải các dạng toán liên quan. Bên cạnh đó, sách còn tuyển chọn các bài tập từ dễ đến khó để giúp học sinh nắm vững kiến thức. Mỗi bài tập đi kèm đều có đáp án và lời giải chi tiết, giúp học sinh tự tin trong quá trình học tập. Trước khi giải phương trình chứa ẩn ở mẫu, chúng ta cần nhớ các bước đơn giản sau: Bước 1: Tìm điều kiện xác định (ĐKXĐ) của phương trình. Bước 2: Quy đồng mẫu hai vế của phương trình. Bước 3: Giải phương trình đã quy đồng mẫu. Bước 4: Xác định nghiệm của phương trình từ các giá trị tìm được ở bước 3. Để minh họa phương pháp giải phương trình chứa ẩn ở mẫu, chúng ta sẽ vận dụng các bài tập cụ thể, biến đổi chúng thành phương trình bậc nhất để giải. Việc này sẽ giúp học sinh hiểu rõ hơn về cách giải quyết các bài toán đề xuất.
Chuyên đề phương trình tích
Nội dung Chuyên đề phương trình tích Bản PDF - Nội dung bài viết Chuyên Đề Phương Trình Tích Chuyên Đề Phương Trình Tích Tài liệu này bao gồm 17 trang, tóm tắt lý thuyết cần thiết về phương trình tích, phân tích dạng và hướng dẫn cách giải các dạng toán liên quan. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề phương trình tích. Để giải phương trình tích (một ẩn), chúng ta cần tìm nghiệm cho từng phần tử có thể làm cho toán tử bằng 0. Các phương pháp phân tích đa thức thành nhân tử đóng vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Bên cạnh đó, việc đặt ẩn phụ cũng giúp cho quá trình lời giải trở nên gọn gàng hơn. Trong phần II, ta sẽ vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích để đưa phương trình đã cho về dạng phương trình bậc nhất đã biết cách giải. Bằng việc hiểu và áp dụng những kiến thức này, học sinh sẽ có thêm sự hỗ trợ trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn.
Chuyên đề mở đầu về phương trình
Nội dung Chuyên đề mở đầu về phương trình Bản PDF - Nội dung bài viết Chuyên đề mở đầu về phương trình Chuyên đề mở đầu về phương trình Tài liệu này bao gồm 18 trang chứa thông tin tóm tắt về lý thuyết cơ bản về phương trình như: phân dạng, cách giải các dạng toán, và các bài tập từ cơ bản đến nâng cao. Đặc biệt, tài liệu này được tuyển chọn kỹ lưỡng để hỗ trợ học sinh trong quá trình học tập chương trình Đại số lớp 8 chương 3: Phương trình bậc nhất một ẩn. Phần A của tài liệu này bao gồm bài giảng củng cố kiến thức cơ bản về phương trình, bao gồm các nội dung như phương trình một ẩn, cách giải phương trình, và phương trình tương đương. Phần B của tài liệu chứa các bài tập minh họa cơ bản trong đề tài này, bao gồm giải phương trình và hai phương trình tương đương. Phần C là phần bài tập nâng cao tổng hợp, giúp học sinh thử thách và nâng cao kiến thức về phương trình. Phần D chứa phiếu bài tập tự luyện, giúp học sinh tự kiểm tra và đánh giá kiến thức của mình sau khi học xong chuyên đề này.