Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Thái Nguyên

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho hàm số 1 2 2 2024 2023 2022 1 2024 2023 2022 m m y x x x (m là tham số thực). Biện luận theo m số điểm cực trị của hàm số đã cho. + b. Cho phương trình 2 m x x x 2 2 2. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm thực phân biệt. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. SA vuông góc với mặt phẳng (ABCD). AB BC a AD a 2 SA a 3. a. Tính thể tích khối chóp S.ABCD. b. Tính côsin của góc giữa hai mặt phẳng (SBC) và (SCD). c. Gọi M là điểm nằm trên cạnh SA sao cho SM x = (0 3 x a). Mặt phẳng (BCM ) chia hình chóp thành hai phần có thể tích là V1 và V2 (trong đó V1 là thể tích của phần chứa đỉnh S). Tìm x để V V 2 1 2.

Nguồn: toanmath.com

Đọc Sách

Đề Thi Học Sinh Giỏi Toán Lớp 12 Tỉnh Quảng Nam Năm 2017-2018 Có Đáp Án
Đề Thi Học Sinh Giỏi Toán Lớp 12 Tỉnh Quảng Nam Năm 2016-2017 Có Đáp Án
Đề thi chọn học sinh giỏi Toán 12 năm 2023 - 2024 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), BAC = 90◦ và SA = BC. Gọi E, F lần lượt là hình chiếu vuông góc của A lên SB, SC; M là trung điểm của SA và G là trọng tâm của tam giác ABC. Tính tỉ số V1 V2 với V1, V2 lần lượt là thể tích của các khối tứ diện MAEF và AEF G. + Cho hình tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và có độ dài cùng bằng 2a. Gọi E và F lần lượt là trung điểm BC, BD. Tính thể tích của khối chóp A.EF DC. + Cho đa giác đều (H) có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình (H). Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật không phải là hình vuông.
Đề thi chọn học sinh giỏi Toán THPT năm 2023 - 2024 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 201 202 203 204 205 206 207 208. Trích dẫn Đề thi chọn học sinh giỏi Toán THPT năm 2023 – 2024 sở GD&ĐT Sơn La : + Một hộp đựng 5 quả cầu trắng, 7 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 3 cm. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối nón có đường tròn đáy nội tiếp tam giác SAB và đỉnh nằm trên cạnh SC bằng? + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có AB BC 2. Gọi M N lần lượt là trung điểm của AB CD. Đường thẳng BN cắt đường thẳng AC tại điểm E (5;3). Phương trình đường thẳng CM là x y 9. Tìm tọa độ điểm C.