Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Việt Nam - Ba Lan - Hà Nội

Đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Việt Nam – Ba Lan – Hà Nội mã đề 369 gồm có 6 trang, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi học kì 1 Toán 10 là 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Việt Nam – Ba Lan – Hà Nội : + Một công ty Taxi có 85 xe chở khách gồm 2 loại: xe chở được 4 khách và xe chở được 7 khách. Nếu dùng tất cả số xe đó, tối đa một lần công ty chờ được 445 khách. Số lượng của mỗi loại xe là? A. 50 xe 4 chỗ; 35 xe 7 chỗ. B. 40 xe 4 chỗ; 45 xe 7 chỗ. C. 35 xe 7 chỗ; 50 xe 4 chỗ. D. 45 xe 4 chỗ; 40 xe 7 chỗ. + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống, biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó đạt độ cao 6m. Thời gian quả bóng sẽ chạm đất kể từ khi được đá lên (tính chính xác đến hàng phần trăm) là? + Cho hai điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức |MA + MB| = |MA – MB| là? A. Đường tròn tâm I, đường kính AB/2. B. Đường trung trực của đoạn thẳng AI. C. Đường trung trực của đoạn thẳng AB. D. Đường tròn đường kính AB.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Du TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Du TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(3;2), C(0;3). a) Tìm tọa độ điểm N sao cho ABCN là hình bình hành. b) Tìm tọa độ điểm H là giao điểm của đường thẳng AB và trục tung. + Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y = x2 + 4x. + Cho 3tanx + 5 = 0 với x là góc tù. Tính giá trị biểu thức P = 4cosx/(sinx)^2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Lý Thái Tổ, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Lý Thái Tổ – TP HCM : + Tìm m để phương trình có hai nghiệm thỏa điều kiện. + Tìm tập xác định của các hàm số. + Xét sự biến thiên và vẽ đồ thị của hàm số: y = 2×2 – 4x + 2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường Trung học Thực hành Sài Gòn – TP HCM : + Trong mặt phẳng tọa độ, cho ba điểm A(-1;4); B(2;5); C(3;-8). a) Chứng minh rằng tam giác ABC vuông. Tính diện tích tam giác ABC. b) Tìm tọa độ H là hình chiếu vuông góc của A trên đường thẳng BC. c) Tìm tọa độ điểm D trên trục tung và có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Giải các phương trình và hệ phương trình sau. + Cho biết sin x = 2/9 (90 < x < 180). Tính cos x; tan x; cot2 (180 – x).