Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 - 2024 trường Thị trấn Diễn Châu - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Thị trấn Diễn Châu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 năm 2023 – 2024 trường Thị trấn Diễn Châu – Nghệ An : + Trong dịp kỷ niệm 50 năm thành lập huyện, 180 học sinh được điều về tham gia diễu hành, người ta tính : nếu dùng loại xe lớn chuyên chở một lượt hết số học sinh thì phải điều động ít hơn dùng loại xe nhỏ là 2 chiếc. Biết rằng mỗi ghế ngồi 1 học sinh và mỗi xe lớn nhiều hơn xe nhỏ là 15 chỗ ngồi. Tính số xe lớn, nếu loại xe đó được huy động. + Một bể nước phía trên là hình trụ cao 4m, bán kính đáy là 1,2m. Đáy lõm xuống hình nửa mặt cầu. Tính diện tích bề mặt ngoài của bể, biết bể không có nắp (lấy π 3,14 các kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O) bán kính R, đường thẳng d không qua O và cắt đường tròn tại hai điểm. Từ một điểm C trên d (A nằm giữa B và C) kẻ hai tiếp tuyến CM, CN với đường tròn (thuộc M và O nằm cùng phía đối với AB), MN cắt OC tại H. a) Chứng minh tứ giác CMON nội tiếp. b) Chứng minh. c) Một đường thẳng đi qua O và song song với MN cắt các tia CM, CN lần lượt tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2022 trường Thực Hành Cao Nguyên - Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 trường THPT Thực Hành Cao Nguyên, tỉnh Đắk Lắk; kỳ thi được diễn ra vào ngày 18 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 trường Thực Hành Cao Nguyên – Đắk Lắk : + Một ô tô và một xc máy khởi hành cùng một lúc từ hai tinh cách nhau 200 km đingược chiều và gặp nhau sau 2 giờ. Tìm vận tốc của ô tô và xe máy, biết rằng nếu vận tốc của ô tô tăng thêm 10 km/h và vận tốc của xe máy giảm đi 5 km/h thì vận tốc của ô tô sẽ gấp 2 lần vận tốc của xe máy. + Cho đường tròn tâm O đường kính AB. Gọi C D là hai điểm thuộc O và nằm khác phía đối với đường thẳng AB. Gọi E F lần lượt là trung điểm hai dây AC và AD. 1) Tính tổng 2 2 AC BC biết bán kính đường tròn O bằng 3cm. 2) Chứng minh bốn điểm A O E F cùng thuộc một đường tròn. 3) Đường thẳng EF cắt đường tròn ngoại tiếp tam giác ADE tại điểm K khác E. Chứng minh đường thẳng DK là tiếp tuyến của đường tròn O. + Không sử dụng máy tính cầm tay, giải hệ phương trình sau?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Phước : + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Gọi H là trực tâm của tam giác ABC, M là điểm bất kì trên cung nhỏ BC. Gọi I J lần lượt là hình chiếu của M lên các đường thẳng BC CA. Đường thẳng IJ cắt đường thẳng AB tại K. a) Chứng minh bốn điểm BKM I cùng thuộc một đường tròn. Từ đó suy ra MK AB. b) Gọi 123 MM M lần lượt là các điểm đối xứng của M qua các đường thẳng BC CA AB. Chứng minh bốn điểm 123 MM M và H thẳng hàng. c) Chứng minh khi điểm M di động trên cung nhỏ BC ta luôn có M M R BAC 2 3 4 sin. Xác định vị trí của điểm M khi dấu bằng xảy ra. + Giải phương trình nghiệm nguyên: 2 2 x y xy y x 6 2 7 0. + Cho x y là các số nguyên thỏa mãn 2 2 x y 2021 2022 chia hết cho xy. Chứng minh rằng x y là các số lẻ và nguyên tố cùng nhau.
Đề tuyển sinh lớp 10 môn Toán năm 2022 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm 2022 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 trường Nguyễn Tất Thành – Hà Nội : + Để đo độ rộng của một khúc sông, bạn Nam đi dọc bờ sông từ vị trí A đến vị trí B cách nhau một khoảng d và tiến hành đo đạc các góc nghiêng a, b so với bờ sông từ các vị trí A, B đến vị trí C bên bờ sông đối diện (Hình 1). Biết d = 50m, a = 27°, B = 45°. Tính độ rộng h của khúc sông (làm tròn đến mét). + Từ một miếng tồn hình tròn, bạn Nam cắt ra được một vật nhọn hình tam giác cân ABC có AB = AC = 15cm và BC = 18cm (Hình 2). Tính bán kính của miếng tồn. + Một biển báo giao thông có dạng hình tròn, đường kính 70cm, được sơn một mặt bởi hai màu đỏ và trắng (phần tô đậm sơn màu đỏ, phần còn lại sơn màu trắng) (Hình 3). Phần được sơn màu trắng là một hình chữ nhật có các kích thước là 10cm và 50cm. Biết rằng, để sơn 1m2 màu đỏ cần chi phí là 250 000 đồng, để sơn 1m2 màu trắng cần chi phí là 200 000 đồng. Hỏi số tiền (làm tròn đến đơn vị nghìn đồng) để sơn toàn bộ biển báo trên bằng bao nhiêu? Cho pi = 3,14.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào ngày 15 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Hà Giang : + Tìm m để phương trình x2 + 2mx – 2m – 6 = 0 (m là tham số) có hai nghiệm x1, x2 sao cho x12 + x22 đạt giá trị nhỏ nhất. + Tìm nghiệm nguyên của phương trình (2x + y)(x – y) + x + 8y = 22. + Cho đường tròn (O) đường kính BC và H là một điểm nằm trên đoạn thẳng BO (điểm H không trùng với hai điểm B và O). Qua H vẽ đường thẳng vuông góc với BC, cắt đường tròn (O) tại A và D. Gọi M là giao điểm của AC và BD, qua M vẽ đường thẳng vuông góc với BC tại N. a) Chứng minh rằng MNBA là tứ giác nội tiếp. b) Chứng minh rằng 2BH.BO = AB2, từ đó tính giá trị của P. c) Từ B vẽ tiếp tuyến với đường tròn (O), cắt hai đường thẳng AC và AN lần lượt tại K và E. Chứng minh rằng đường thẳng EC luôn đi qua trung điểm I của đoạn thẳng AH khi điểm H di động trên đoạn thẳng BO.