Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 - 2024 trường Thị trấn Diễn Châu - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Thị trấn Diễn Châu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 năm 2023 – 2024 trường Thị trấn Diễn Châu – Nghệ An : + Trong dịp kỷ niệm 50 năm thành lập huyện, 180 học sinh được điều về tham gia diễu hành, người ta tính : nếu dùng loại xe lớn chuyên chở một lượt hết số học sinh thì phải điều động ít hơn dùng loại xe nhỏ là 2 chiếc. Biết rằng mỗi ghế ngồi 1 học sinh và mỗi xe lớn nhiều hơn xe nhỏ là 15 chỗ ngồi. Tính số xe lớn, nếu loại xe đó được huy động. + Một bể nước phía trên là hình trụ cao 4m, bán kính đáy là 1,2m. Đáy lõm xuống hình nửa mặt cầu. Tính diện tích bề mặt ngoài của bể, biết bể không có nắp (lấy π 3,14 các kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O) bán kính R, đường thẳng d không qua O và cắt đường tròn tại hai điểm. Từ một điểm C trên d (A nằm giữa B và C) kẻ hai tiếp tuyến CM, CN với đường tròn (thuộc M và O nằm cùng phía đối với AB), MN cắt OC tại H. a) Chứng minh tứ giác CMON nội tiếp. b) Chứng minh. c) Một đường thẳng đi qua O và song song với MN cắt các tia CM, CN lần lượt tại E và F. Xác định vị trí của C trên d sao cho diện tích tam giác CEF nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hà Nam Đề thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hà Nam Sytu xin gửi đến quý thầy cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chuyên) năm học 2023-2024 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Kỳ thi sẽ diễn ra vào thứ Ba, ngày 30 tháng 05 năm 2023. Trích dẫn một số câu hỏi từ Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hà Nam: 1. Cho biểu thức A. Hãy rút gọn biểu thức A và tìm tất cả các số nguyên x để |2A - 1| + 1 = 2A. 2. Đề cho đường tròn (O) có dây cung BC không đi qua tâm và điểm di động A trên đường tròn sao cho tam giác ABC nhọn với AB < AC. Hãy chứng minh một số tính chất của tam giác và đường tròn liên quan đến điểm A. 3. Cho a, b, c là ba số thực dương thỏa mãn một số điều kiện. Tìm giá trị lớn nhất của biểu thức được cho. Đây là một phần nhỏ trong bài thi, với nhiều câu hỏi đa dạng và đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề. Chúc các em học sinh ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chung) năm 2023 - 2024 sở GD&ĐT Hà Nam Đề thi tuyển sinh chuyên môn Toán (chung) năm 2023 - 2024 sở GD&ĐT Hà Nam Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chung) năm học 2023 – 2024 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Đề thi bao gồm đáp án và lời giải chi tiết, được tổ chức vào thứ Hai ngày 29 tháng 05 năm 2023. Trong đề tuyển sinh, có các câu hỏi như sau: Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2, đường thẳng (d) có phương trình y = 2x + m^2 – 4m + 9 (với m là tham số) và đường thẳng (delta) có phương trình y = (a − 3)x + 4 (với a là tham số). Hãy tìm a để đường thẳng (d) và đường thẳng (delta) vuông góc với nhau. Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với mọi m. Gọi A(x1;y1) và B(x2;y2) (với x1 < x2), hãy tìm tất cả các giá trị của tham số m sao cho |x1 − 2023| − |x2 + 2023| = y1 + y2 − 48. Xét đường tròn (O) và tiếp tuyến MA, MB với đường tròn từ điểm M bên ngoài. Chứng minh AECD nội tiếp đường tròn, rằng CDE = CFD, CD vuông góc IK và NC đi qua trung điểm của AB. Cho a, b, c là các số không âm thỏa mãn a + b + c = 1011. Chứng minh. Đề thi tuyển sinh chuyên môn Toán năm 2023 - 2024 sở GD&ĐT Hà Nam hứa hẹn sẽ là thách thức đầy hấp dẫn dành cho các thí sinh. Hãy cùng chuẩn bị và vững tin để vượt qua thử thách này!
Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD ĐT Giao Thuỷ Nam Định
Nội dung Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD ĐT Giao Thuỷ Nam Định Bản PDF - Nội dung bài viết Đề khảo sát Toán vào lớp 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ Nam Định Đề khảo sát Toán vào lớp 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ Nam Định Sytu xin chào đến quý thầy cô và các em học sinh lớp 9. Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm 2023 lần 3 của phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định đã được công bố. Đề thi bao gồm câu hỏi và đáp án, cũng như hướng dẫn cách chấm điểm. Để có cái nhìn tổng quan, dưới đây là một vài câu hỏi đáng chú ý trong đề khảo sát: 1. Cho phương trình \(2x^2 - 3mx = 0\) (với m là tham số). a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị m. b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt \(x_1, x_2\) thỏa mãn \(x_1 + x_2 = 3\). 2. Cho đường tròn O bán kính 3cm. Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm) sao cho góc AOB = 120 độ. Tính diện tích phần giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB. 3. Cho đường tròn (O) có dây AB không phải là đường kính, các tiếp tuyến tại A và B cắt nhau tại M. Vẽ tiếp tuyến MCD nằm giữa hai tia MA và MO (MC và MD). Đoạn thẳng MO cắt AB tại H và cắt (O) tại I. Chứng minh: a) \( \frac{MA}{MC} = \frac{MD}{MO} \) và \( \frac{MC}{MD} = \frac{OH}{OM} \). b) Tứ giác OHCD nội tiếp và CI là tia phân giác của góc HCM. Hãy chuẩn bị kỹ lưỡng và tự tin để làm bài thi tốt nhé! Chúc các em thành công!
Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024
Nội dung Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bản PDF - Nội dung bài viết Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 - 2024 bao gồm 82 trang, được biên soạn bởi thầy giáo Lê Bá Bảo. Tài liệu này là tuyển tập 15 đề ôn thi tuyển sinh vào lớp 10 THPT môn Toán, với các đề thi hình thức 100% tự luận. Thời gian làm bài cho mỗi đề là 90 phút, và đều đi kèm đáp án và lời giải chi tiết. Trong bộ đề này, có một câu hỏi thú vị như sau: "Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bả Đen bằng cáp treo khứ hồi. Tuy nhiên, có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên và sẽ đi cáp treo khi xuống. Vì vậy, 5 bạn trẻ mua vé lượt xuống, khiến cho đoàn phải chi ra tổng cộng 9.450.000 đồng. Hỏi giá vé cáp treo khứ hồi và vé lượt là bao nhiêu? Biết rằng giá vé lượt rẻ hơn giá vé khứ hồi 110.000 đồng." Ngoài ra, bộ đề còn đưa ra các bài toán khác như: Tính giá trị của góc BIF trong tam giác ABC vuông tại A; Chứng minh rằng điểm A nằm trên đường tròn ngoại tiếp tam giác EFK trong hình chữ nhật ABCD với các điều kiện đã cho. Qua bộ đề này, học sinh sẽ được rèn luyện kỹ năng giải bài toán, tư duy logic và sự tự tin khi đối mặt với các dạng đề thi tuyển sinh vào lớp 10. Cùng tham gia và thách thức bản thân với những câu hỏi thú vị và bổ ích trong bộ đề ôn thi này nhé!