Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Hoàng Mai Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Hoàng Mai Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 1 Toán lớp 9 năm 2019 2020 phòng GD ĐT Hoàng Mai Hà Nội Đề thi học kì 1 Toán lớp 9 năm 2019 2020 phòng GD ĐT Hoàng Mai Hà Nội Ngày 11 tháng 12 năm 2019, tại phòng Giáo dục và Đào tạo UBND quận Hoàng Mai, thành phố Hà Nội đã diễn ra kỳ thi kiểm tra cuối học kỳ 1 môn Toán lớp 9 năm học 2019 – 2020. Kỳ thi này bao gồm các bài kiểm tra từ tiết học Toán số 34 và số 35 theo chương trình môn Toán lớp 9. Bài thi Toán lớp 9 năm 2019 – 2020 phòng GD&ĐT Hoàng Mai – Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Học sinh có thời gian làm bài trong khoảng 90 phút. Một số câu hỏi trong đề thi bao gồm: Xác định hệ số a, b của hàm số bậc nhất y = ax + b biết đồ thị hàm số này là đường thẳng đi qua điểm A(1;-5) và song song với đường thẳng đã cho. Tìm giá trị của m để đường thẳng y = (m – 3)x + 5 (với m là tham số và m khác 3) cắt đường thẳng đã cho tại một điểm nằm bên phải trục tung. Tính chiều cao của cột đèn khi biết góc giữa tia nắng mặt trời và mặt đất là 42°, cùng thời điểm bóng của cột đèn trên mặt đất dài 7,2m. Chứng minh các tính chất của tam giác SAO và hình học trên đường tròn (O) cho trước. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức và kỹ năng tính toán để giải quyết các vấn đề, từ đó phát triển khả năng tư duy logic, giải quyết vấn đề và làm việc nhóm.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 9 năm 2018 - 2019 phòng GDĐT Thị Xã Phú Mỹ - Bà Rịa - Vũng Tàu
THCS. giới thiệu đến toàn thể các em học sinh khối lớp 9 đề thi HK1 Toán 9 năm 2018 – 2019 phòng GD&ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu, đề được biên soạn theo hình thức tự luận, gồm 1 trang với 5 bài toán, thời gian làm bài dành cho học sinh là 90 phút, kỳ thi nhằm đánh giá lại tất cả những kiến thức Toán 9 học sinh đã được truyền đạt trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HK1 Toán 9 năm 2018 – 2019 phòng GD&ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu : + Cho đường tròn tâm O đường kính AB và C là một điểm trên đường tròn (C khác A và B). Kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của AC; OI cắt tiếp tuyến tại A của (O) tại M; MB cắt CH tại K. a) Chứng minh: OI ⊥ AC và tam giác ABC vuông tại C. b) Chứng minh MC là tiếp tuyến của (O). c) Chứng minh K là trung điểm của CH. [ads] + Cho tam giác ABC vuông tại A có đường cao AH (H ∈ BC). Tính AH, AC và sinC biết BH = 9cm, CH = 16cm. + Trong mặt phẳng tọa độ Oxy cho hai đường thẳng (d1): y = 2x + 2 và (d2): y = -1/2.x – 2. Gọi C là giao điểm của (d1), (d2). Hai đường thẳng (d1) và (d2) cắt trục Oy theo thứ tự tại D và E. a) Vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy. b) Tìm tọa độ các điểm C, D, E. c) Tính diện tích tam giác CDE.
Đề thi HK1 Toán 9 năm học 2018 - 2019 phòng GDĐT Đống Đa - Hà Nội
Đề thi HK1 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội gồm 5 bài toán tự luận, các dạng toán bao gồm: tính giá trị biểu thức, giải phương trình, tính – rút gọn và tìm GTLN – GTNN của biểu thức, đồ thị hàm số bậc nhất, bài toán đường tròn … học sinh có 90 phút để giải đề, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội : + Cho x, y, z là các số dương thay đổi thỏa mãn: xy + yz + zx = 5. Tìm giá trị nhỏ nhất của biểu thức T = 3x^2 + 3y^2 + z^2. + Cho hàm số bậc nhất y = (m – 1)x – 4 (d) (m khác 1). 1) Vẽ đồ thị hàm số khi m = 2. 2) Tìm m để (d) song song với đồ thị hàm số y = -3x + 2 (d1). 3) Tìm m để (d) cắt đồ thị hàm số y = x – 7 (d2) tại một điểm nằm ở bên trái trục tung. [ads] + Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm). 1) Chứng minh OC ⊥ BD. 2) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn. 3) Chứng minh góc CMD = CDA. 4) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 phòng GD và ĐT Bình Thạnh - TP. HCM
THCS. giới thiệu đến thầy, cô và các em học sinh lớp 9 nội dung đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Bình Thạnh – TP. HCM, đề gồm 1 trang với 6 bài tập tự luận, học sinh làm bài trong vòng 90 phút (không tính thời gian giám thị phát đề).
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 phòng GD và ĐT Sơn Tây - Hà Nội
Đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Sơn Tây – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 15 tháng 12 năm 2018. THCS. xin chia sẻ nội dung đề thi đến quý thầy, cô và các em học sinh. Trích dẫn đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Sơn Tây – Hà Nội : + Cho hàm số bậc nhất y = (2m – 1)x + 3 có đồ thị là đường thẳng (d). a/ Tìm m để đường thẳng (d) song song với đường thẳng y = 2x – 1. b/ Vẽ đường thẳng (d) với m vừa tìm được trên mặt phẳng tọa độ Oxy. c/ Tìm m để đường thẳng (d) và hai đường thẳng y = x + 3 và y = 2x + 1 đồng quy. [ads] + Từ một điểm A ở ngoài đường tròn (O;R), vẽ tiếp tuyến AE với đường tròn (O), (E là tiếp điểm). Vẽ dây EH vuông góc với OA tại M. a/ Biết bán kính R = 5cm; OM = 3cm. Tính độ dài dây EH. b/ Chứng minh AH là tiếp tuyến của đường tròn (O). c/ Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O), (F là tiếp điểm). Chứng minh ba điểm E, O, F thẳng hàng và BF.AE = R. d/ Trên tia HB lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AD tại Q. Chứng minh AE = DQ.