Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An

Nội dung Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An Bản PDF - Nội dung bài viết Đề HSG Toán lớp 8 vòng 2 năm 2022 - 2023 trường THCS Cao Xuân Huy Nghệ An Đề HSG Toán lớp 8 vòng 2 năm 2022 - 2023 trường THCS Cao Xuân Huy Nghệ An Chào mừng quý thầy cô và các em học sinh lớp 8 đến với đề thi chọn học sinh giỏi cấp trường môn Toán vòng 2 năm học 2022 - 2023 của trường THCS Cao Xuân Huy, Nghệ An. Đề thi bao gồm câu hỏi và đáp án chi tiết để hướng dẫn giải. Dưới đây là một số câu hỏi trong đề thi: Cho x, y là các số hữu tỷ khác 1 thỏa mãn: $\frac{1}{12} x = \frac{1}{12} y$. Chứng minh rằng $M = x^2 + y^2 - xy$ là bình phương của một số hữu tỷ. Cho đa thức f(x). Tìm số dư của phép chia f(x) cho $x(x+1)(x+2)$ biết rằng f(x) chia x-1 dư 7 và f(x) chia x+2 dư 1. Cho tam giác ABC vuông tại A, có đường cao AH và trung tuyến BN. Qua A kẻ đường thẳng vuông góc với BN cắt BN và BC lần lượt tại K và M. Chứng minh rằng: a) $(AK)^2 = AB . AC$ b) $\triangle BKH \sim \triangle BAH$ c) $\frac{MB^2}{BH} = \frac{BC}{2}$ Cho hình vuông có cạnh bằng 2023cm. Bên trong hình vuông, lấy 2022 điểm phân biệt sao cho trong 2026 điểm không có 3 điểm nào thẳng hàng. Chứng minh tồn tại 1 tam giác có diện tích không lớn hơn $\frac{2023}{2} cm^2$ với 3 trong số 2026 điểm đã cho. File WORD dành cho quý thầy cô có thể tải xuống để xem đầy đủ nội dung và đề thi chi tiết. Chúc quý vị và các em học sinh tập trung và làm bài tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 8 cấp huyện năm 2016 - 2017 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 cấp huyện năm 2016 – 2017 phòng GD&ĐT Hậu Lộc – Thanh Hóa; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HSG Toán 8 cấp huyện năm 2016 – 2017 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Cho tam giác ABC có ba góc nhọn, các đường cao BD, CE cắt nhau tại H. a) Chứng minh tam giác ABD đồng dạng tam giác ACE. b) Chứng minh BH.HD = CH.HE. c) Nối D với E, cho biết BC = a, AB = AC = b. Tính độ dài đoạn thẳng DE theo a. + Tìm số nguyên x thỏa mãn cả hai bất phương trình. + Phân tích đa thức sau thành nhân tử.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. a. Chứng minh: KF // EH. b. Chứng minh: các đường thẳng EK, HF, BD đồng quy. c. Chứng minh: SMKAE = SMHCF. + Cho biểu thức: A. a. Rút gọn A. b. Tìm giá trị nguyên của x để A có giá trị nguyên. + Chứng minh rằng: n3 + 2012n chia hết cho 48 với mọi n chẵn.
Đề thi HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Hoài Nhơn - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định, kỳ thi được diễn ra ngày 23 tháng 04 năm 2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định : + Cho tam giác ABC có A > B. Trên cạnh BC lấy điểm H sao cho HAC = ABC. Đường phân giác của góc BAH cắt BH ở E. Từ trung điểm M của AB kẻ ME cắt đường thẳng AH tại F. Chứng minh rằng: CF // AE. + Chứng minh rằng: Chữ số tận cùng của hai số tự nhiên n và n5 là như nhau. + Tìm tất cả các số nguyên x thỏa mãn: x2 + x – p = 0; với p là số nguyên tố.
Đề thi HSG Toán 8 năm 2015 - 2016 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.