Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề phân số

Nội dung Phương pháp giải các dạng toán chuyên đề phân số Bản PDF - Nội dung bài viết Tài liệu hướng dẫn giải các dạng toán chuyên đề phân sốPhân loại nội dung tài liệu Tài liệu hướng dẫn giải các dạng toán chuyên đề phân số Tài liệu này được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, với 75 trang tương ứng với 15 bài học, phân loại và hướng dẫn giải các dạng toán chuyên đề về phân số trong chương trình Số học 6. Phân loại nội dung tài liệu Bài 1. Mở rộng khái niệm phân số: Đội biểu diễn phân số của một hình, viết các phân số, tính giá trị của phân số, biểu thị số đo dưới dạng phân số, tìm điều kiện để phân số tồn tại. Bài 2. Phân số bằng nhau: Nhận biết cặp phân số bằng nhau, không bằng nhau, tìm số chưa biết trong đẳng thức của hai phân số. Bài 3. Tính chất cơ bản của phân số: Áp dụng tính chất cơ bản để viết các phân số bằng nhau, giải thích lí do bằng nhau của các phân số. Bài 4. Rút gọn phân số: Rút gọn phân số, tìm phân số tối giản, chứng minh một phân số là tối giản. Bài 5. Quy đồng mẫu nhiều phân số: Quy đồng mẫu các phân số, giải bài toán về quy đồng mẫu. Bài 6. So sánh phân số: So sánh các phân số cùng mẫu và không cùng mẫu. Bài 7. Phép cộng phân số: Cộng hai phân số, điền dấu thích hợp vào ô vuông, tìm số chưa biết trong đẳng thức có chứa phép cộng phân số. Bài 8. Tính chất cơ bản của phép cộng phân số: Áp dụng các tính chất của phép cộng, cộng nhiều phân số, rèn luyện kĩ năng cộng hai phân số. Bài 9. Phép trừ phân số: Tìm số đối, trừ một phân số cho một phân số, tìm số hạng chưa biết trong một tổng hoặc hiệu. Bài 10. Phép nhân phân số: Thực hiện phép nhân phân số, viết phân số dưới dạng tích của hai phân số. Bài 11. Tính chất cơ bản của phép nhân phân số: Thực hiện phép nhân, tính giá trị biểu thức, giải bài toán dẫn đến phép nhân phân số. Bài 12. Phép chia phân số: Tìm số nghịch đảo, thực hiện phép chia phân số, viết phân số dưới dạng thương của hai phân số. Bài 13. Hỗn số, số thập phân, phần trăm: Viết phân số dưới dạng hỗn số, số thập phân, phần trăm, cộng trừ hỗn số, nhân chia hỗn số, tính giá trị của biểu thức số. Bài 14. Tìm giá trị phân số của một số: Tìm giá trị phân số của một số cho trước. Bài 15. Tìm một số biết giá trị phân số của nó: Tìm một số khi biết giá trị phân số của nó. Bài 16. Tìm tỉ số của hai số: Các bài tập liên quan đến tỉ số của hai số, tỉ số phần trăm, tỉ lệ xích. Bài 17. Biểu đồ phần trăm: Dựng biểu đồ phần trăm, đọc biểu đồ, tính tỉ số phần trăm của các số.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hỗn số, số thập phân, phần trăm
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hỗn số, số thập phân, phần trăm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Phát biểu được khái niệm hỗn số, số thập phân, phần trăm. Kĩ năng: + Biến đổi được hỗn số về phân số và ngược lại. + Biết viết dạng phân số về số thập phân và ngược lại. + Viết được số thập phân dưới dạng kí hiệu %. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viết phân số dưới dạng hỗn số và ngược lại. Cách viết phân số a b với a b và 0 b a thành hỗn số: + Bước 1. Thực hiện phép chia a cho b được thương c và số dư d. + Bước 2. a/b = c + d/b = c d/b. Nhận xét: Phần phân số d b luôn nhỏ hơn 1. Chú ý: Nếu phân số âm, ta chỉ cần viết số đối của nó dưới dạng hỗn số rồi thêm dấu “-” trước kết quả. Cách viết một hỗn số dương thành phân số. Chú ý: Nếu hỗn số âm thì ta viết số đối của nó dưới dạng phân số rồi thêm dấu “-” trước kết quả. Dạng 2 : Viết các số dưới dạng số thập phân, phần trăm và ngược lại. Đổi số thập phân ra phân số thập phân. Dạng 3 : Các phép toán với hỗn số. Cộng, trừ hai hỗn số: Nếu a d nhưng b e c f thì ta cần chuyển 1 đơn vị ở phần nguyên của số bị trừ để thêm vào phần phân số, sau đó thực hiện phép trừ. Chú ý: Ta cũng có thể viết các hỗn số dưới dạng phân số rồi thực hiện phép tính cộng, trừ. Nhân, chia hai hỗn số: + Viết hỗn số dưới dạng phân số rồi thực hiện phép nhân, chia phân số. + Khi nhân hoặc chia một hỗn số với một số nguyên, ta có thể viết hỗn số dưới dạng một tổng của một số nguyên và một phân số. Dạng 4 : Các phép tính về số thập phân. Dạng 5 : Tính giá trị của một biểu thức.
Chuyên đề phép chia phân số
Tài liệu gồm 25 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép chia phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Học sinh phát biểu được khái niệm số nghịch đảo và biết cách tìm số nghịch đảo của một số khác 0. + Phát biểu và vận dụng được quy tắc chia hai phân số. Kĩ năng: + Thực hiện được phép chia phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm số nghịch đảo của một số cho trước. Hai số gọi là nghịch đảo của nhau nếu tích của chúng bằng 1. Nhận xét: + Với a b và a b 0 0 thì a b và b a là hai số nghịch đảo. + Với a a 0 thì a và 1 a là hai số nghịch đảo. + Số 1 (hoặc -1) có nghịch đảo là chính nó. + Số 0 không có số nghịch đảo. + Mỗi số khác 0 chỉ có duy nhất một số nghịch đảo. Dạng 2 : Thực hiện phép chia phân số. Muốn chia một phân số hay một số nguyên cho một phân số, ta nhân số bị chia với số nghịch đảo của số chia. Muốn chia một phân số cho một số nguyên ta giữ nguyên tử của phân số và nhân mẫu với số nguyên. Dạng 3 : Viết một phân số dưới dạng thương của hai phân số. Ta thực hiện theo các bước sau: + Bước 1. Viết tử và mẫu dưới dạng tích của hai số nguyên. + Bước 2. Lập tích các phân số có tử và mẫu được chọn trong các số nguyên đó. + Bước 3. Chuyển phép nhân phân số thành phép chia cho số nghịch đảo. Dạng 4 : Tìm x. Dạng 5 : Bài toán có lời văn. Dạng 6 : Tính giá trị của một biểu thức.
Chuyên đề phép nhân phân số, tính chất cơ bản của phép nhân phân số
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép nhân phân số, tính chất cơ bản của phép nhân phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được các quy tắc nhân hai phân số. + Nắm vững các tính chất của phép nhân phân số. Kĩ năng: + Thành thạo nhân hai phân số. + Biết cách thực hiện phép tính có chứa phép nhân, phép cộng, phép trừ phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện phép nhân phân số. Bài toán 1. Thực hiện phép nhân hai phân số. Quy tắc nhân hai phân số: Nhân tử với tử, nhân mẫu với mẫu (Chú ý rút gọn kết quả). Nhân một số nguyên với một phân số: Nhân số nguyên với tử của phân số và giữ nguyên mẫu. Bài toán 2. Thực hiện phép nhân nhiều phân số. Sử dụng các tính chất của phép nhân để tính hợp lí các biểu thức. Dạng 2 : Tìm x.
Chuyên đề phép trừ phân số
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép trừ phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu khái niệm phân số đối. + Hiểu quy tắc thực hiện phép trừ hai phân số. Kĩ năng: + Biết cách tìm phân số đối của một phân số. + Biết cách thực hiện phép tính trừ phân số. + Biết cách tính biểu thức có chứa phép trừ và phép cộng phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm số đối của phân số. Số đối của phân số a/b là -a/b. Dạng 2 : Thực hiện phép tính. Bài toán 1. Trừ hai phân số. Muốn trừ một phân số cho một phân số, ta cộng số bị trừ với số đối của số trừ. Trừ hai phân số cùng mẫu. Trừ hai phân số khác mẫu: + Bước 1. Quy đồng mẫu số các phân số. + Bước 2. Thực hiện phép trừ hai phân số cùng mẫu. Chú ý rút gọn kết quả. Bài toán 2. Thực hiện phép tính. Dạng 3 : Tính tổng của dãy số theo quy luật. Dạng 4 : Tìm số chưa biết trong một đẳng thức. Dạng 5 : So sánh phân số. Cách 1. + Dùng “phần bù” với 1: 1 a a b b thì a b được gọi là “phần bù” với 1 của a b. + Phân số nào có “phần bù” lớn hơn thì nhỏ hơn. Cách 2. + Dùng “phần hơn” với 1: 1 c c d d thì c d được gọi là “phần hơn” với 1 của c d. + Phân số nào có “phần hơn” lớn hơn thì lớn hơn. Nhận xét: Dùng phần bù với phân số nhỏ hơn 1 và dùng phần hơn với phân số lớn hơn 1.