Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa

Nội dung Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Trong kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 - 2021 do phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức vào Thứ Sáu ngày 09 tháng 04 năm 2021, đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa đã được ra đề. Đề thi này gồm 01 trang với tổng cộng 06 bài toán dạng tự luận, dành cho thí sinh lớp 7. Thời gian làm bài thi được quy định là 150 phút, đủ để học sinh tự tin trả lời các câu hỏi. Trong đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa, có một số bài toán khá thú vị như sau: + Bài toán 1: Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Yêu cầu chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB = AC = AE. + Bài toán 2: Cho A nằm trong góc xOy nhọn. Hãy tìm điểm B, C lần lượt thuộc trục Ox, Oy sao cho chu vi của tam giác ABC là nhỏ nhất. + Bài toán 3: Tìm các số nguyên dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Đây là những bài toán đòi hỏi sự tư duy logic và kiến thức Toán học sâu rộng của các thí sinh lớp 7. Chúc các em có một kỳ thi thành công và đạt kết quả tốt trong đề thi HSG huyện Toán năm 2020 - 2021!

Nguồn: sytu.vn

Đọc Sách

15 đề thi HSG cấp huyện lớp 7 môn Toán có lời giải chi tiết
Nội dung 15 đề thi HSG cấp huyện lớp 7 môn Toán có lời giải chi tiết Bản PDF - Nội dung bài viết Tài liệu ôn luyện cho kỳ thi Học sinh giỏi Toán lớp 7 cấp huyện Tài liệu ôn luyện cho kỳ thi Học sinh giỏi Toán lớp 7 cấp huyện Để giúp các em học sinh lớp 7 chuẩn bị tốt cho kỳ thi Học sinh giỏi Toán cấp huyện, Sytu tổng hợp tài liệu 15 đề thi HSG Toán lớp 7 cấp huyện với lời giải chi tiết. Các đề thi này được biên soạn bởi tác giả có chuyên môn cao về Toán Học. Các nội dung trong tài liệu bao gồm: Bài toán 1: Tìm số tự nhiên có 3 chữ số theo điều kiện đề bài đưa ra. Bài toán 2: Chứng minh một số tính chất của đoạn thẳng và tam giác trên mặt phẳng. Bài toán 3: Tính số đo các góc trong tam giác có điều kiện góc A = 3B = 6C và chứng minh một bất đẳng thức liên quan đến các đoạn thẳng trong tam giác. Tài liệu này không chỉ giúp các em ôn tập, rèn luyện kỹ năng giải bài tập mà còn giúp họ hiểu sâu về các vấn đề Toán học cụ thể. Hy vọng rằng tài liệu sẽ giúp ích cho việc học tập và chuẩn bị cho cuộc thi sắp tới của các em học sinh lớp 7.
Đề thi học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Đông Hưng Thái Bình
Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Đông Hưng Thái Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 phòng GD&ĐT Đông Hưng - Thái Bình Đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 phòng GD&ĐT Đông Hưng - Thái Bình Xin chào quý thầy cô và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 của phòng GD&ĐT Đông Hưng - Thái Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các em tham khảo. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC có góc A tù. Kẽ AD // AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE // AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM // DE. Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. Không dùng máy tính, hãy tính giá trị của biểu thức S. Hy vọng đây sẽ là tài liệu hữu ích để các em ôn tập và chuẩn bị cho kì thi sắp tới. Chúc các em học tốt!
Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội
Nội dung Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Đề thi Olympic tài năng trẻ Toán lớp 7 năm 2018 – 2019 của cụm trường THCS quận Đống Đa, Hà Nội bao gồm 01 trang với 4 câu tự luận. Đề thi được tổ chức nhằm tạo cơ hội cho các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội cùng giao lưu, tuyển chọn. Mục tiêu của đề thi là tuyên dương, khen thưởng và thúc đẩy nâng cao chất lượng học tập môn Toán lớp 7.
Đề thi Olympic Toán 7 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương
Nội dung Đề thi Olympic Toán 7 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề thi Olympic Toán 7 năm 2017-2018 phòng GD&ĐT Kinh Môn-Hải Dương Đề thi Olympic Toán 7 năm 2017-2018 phòng GD&ĐT Kinh Môn-Hải Dương Chào mừng đến với Đề thi Olympic Toán lớp 7 năm 2017-2018 từ phòng GD&ĐT Kinh Môn - Hải Dương. Bộ đề thi này bao gồm đề thi, đáp án chi tiết và lời giải, cung cấp hướng dẫn chấm điểm một cách chi tiết. Dưới đây là một số câu hỏi trích dẫn từ đề thi Olympic Toán lớp 7 năm 2017-2018 phòng GD&ĐT Kinh Môn - Hải Dương: Cho tam giác ABC có góc A nhỏ hơn 90 độ. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. Hãy chứng minh rằng: MC = BN và BN = CM. Hãy kẻ AH song song với BC. Chứng minh rằng AH đi qua trung điểm của MN. Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Hãy tính số đo AMB? Cho biết (x - 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm. Đề thi Olympic Toán lớp 7 năm 2017-2018 phòng GD&ĐT Kinh Môn - Hải Dương chắc chắn sẽ đem đến cho các em học sinh những thách thức và cơ hội để rèn luyện kỹ năng toán học của mình. Chúc các em thành công và phát triển trong hành trình học tập của mình!