Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa

Nội dung Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Trong kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 - 2021 do phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức vào Thứ Sáu ngày 09 tháng 04 năm 2021, đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa đã được ra đề. Đề thi này gồm 01 trang với tổng cộng 06 bài toán dạng tự luận, dành cho thí sinh lớp 7. Thời gian làm bài thi được quy định là 150 phút, đủ để học sinh tự tin trả lời các câu hỏi. Trong đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa, có một số bài toán khá thú vị như sau: + Bài toán 1: Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Yêu cầu chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB = AC = AE. + Bài toán 2: Cho A nằm trong góc xOy nhọn. Hãy tìm điểm B, C lần lượt thuộc trục Ox, Oy sao cho chu vi của tam giác ABC là nhỏ nhất. + Bài toán 3: Tìm các số nguyên dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Đây là những bài toán đòi hỏi sự tư duy logic và kiến thức Toán học sâu rộng của các thí sinh lớp 7. Chúc các em có một kỳ thi thành công và đạt kết quả tốt trong đề thi HSG huyện Toán năm 2020 - 2021!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thái Bình, tỉnh Thái Bình; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Thái Bình : + Cho tam giác ABC vuông tại B có AB = BC. Trên cạnh BC lấy điểm M khác B và C, tia phân giác của góc BAM cắt BC ở D. Đường thẳng qua D vuông góc với AM tại E cắt đường thẳng qua C vuông góc với BC tại N. a) Chứng minh rằng AB = AE. b) Tính DAN. c) Đặt AB = a. Chứng minh rằng chu vi tam giác DCN bằng 2a. + Cho tam giác ABC có diện tích bằng 1, M là điểm tùy ý trong trong tam giác. Chứng minh rằng MA.BC MB.AC MC.AB 4.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Kim Sơn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Kim Sơn, tỉnh Ninh Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Kim Sơn – Ninh Bình : + Viết ngẫu nhiên một số tự nhiên có hai chữ số lớn hơn 50. Tìm số phần tử của tập hợp T gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra. Tính xác suất của biến cố “Số tự nhiên được viết ra là tổng của hai số tự nhiên lẻ liên tiếp”. + Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Gọi I là một điểm trên đoạn thẳng AC (I khác A và C); K là một điểm trên đoạn thẳng EB (K khác E và B) sao cho AI = EK. a) Chứng minh AC = EB và ABE = 90°. b) Chứng minh điểm M là trung điểm của đoạn thẳng IK. c) Từ điểm B và điểm C kẻ các đường thẳng BP và CQ lần lượt vuông góc với đường thẳng AE (P, Q thuộc AE). Chứng minh AP + AQ = BC. + Một chiếc xe tải chở hàng, thùng xe có dạng hình hộp chữ nhật. Thùng xe có chiều dài 9m, chiều rộng bằng chiều cao và cùng bằng 2m (các kích thước được đo trong lòng của thùng xe). a) Hãy tính thể tích của thùng xe. b) Người ta muốn dùng chiếc xe này để chờ các kiện hàng có dạng hình lập phương với độ dài cạnh là 5dm. Hỏi xe chở được nhiều nhất bao nhiêu kiện hàng?
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Một phố nhỏ có 44 người trong độ tuổi từ 1 đến 85 (tuổi mỗi người là một số nguyên dương). Chứng minh rằng trong số những người trên có hai người cùng tuổi hoặc có ba người mà tuổi của một người bằng tổng số tuổi của hai người kia. + Cho tam giác ABC vuông cân tại A. Giả sử D là điểm nằm bên trong tam giác sao cho tam giác ABD cân và 0 ADB 150. Trên nửa mặt phẳng không chứa D có bờ là đường thẳng AC lấy điểm E sao cho tam giác ACE là tam giác đều. Chứng minh ba điểm B, D, E thẳng hàng. + Một người gửi tiết kiệm vào ngân hàng với số tiền là 200 triệu đồng, gửi theo lãi suất 6% kì hạn một năm lĩnh lãi mỗi quí (3 tháng). Theo qui định nếu đến hạn mà không đến lĩnh lãi thì số đó sẽ được nhập vào vốn gửi ban đầu. Do công việc người đó không đến lĩnh quí thứ nhất, các quí còn lại vẫn đến lĩnh lãi bình thường. Vậy tổng số tiền gửi và lãi sau một năm người đó sẽ nhận được là bao nhiêu?
Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Gia Viễn, tỉnh Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Gia Viễn – Ninh Bình : + Nhà trường dự định chia vở viết cho 3 lớp 7A, 7B, 7C tỉ lệ theo số học sinh là 765. Nhưng sau đó vì có học sinh thuyên chuyển giữa ba lớp nên phải chia lại theo tỉ lệ 654. Do đó có lớp đã nhận được ít hơn dự định là 12 quyển. Tính số vở mà mỗi lớp thực tế đã nhận được. + Cho hai đa thức: fx x 1 x 3 và 3 2 g x ax bx 3. Xác định hệ số a b của đa thức g x biết nghiệm của đa thức f x cũng là nghiệm của đa thức g x. + Một hộp chứa bốn cái thẻ được đánh số 1; 2; 3; 4, hai thẻ khác nhau thì ghi hai số khác nhau. Lấy ngẫu nhiên hai thẻ cùng một lúc. Tính xác xuất của các biến cố sau: a) A : “Tổng các số trên hai thẻ là số chẵn”. b) B: “Tích các số trên hai thẻ là số chẵn”.