Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Trị

Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Trị Bản PDF Thứ Sáu ngày 05 tháng 11 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn học sinh giỏi lớp 12 và chọn đội tuyển dự thi Quốc gia môn Toán năm học 2021 – 2022. Đề thi chọn học sinh giỏi Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Quảng Trị gồm 02 bài thi, bài thi vòng 1 gồm 04 câu tự luận, thời gian làm bài 180 phút, bài thi vòng 2 gồm 04 câu tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Quảng Trị : + Với mỗi n nguyên dương, xét phương trình nghiệm nguyên 3×2 – y2 = 23^n. Chứng minh rằng: a) Nếu n là số chẵn thì phương trình trên vô nghiệm. b) Nếu n là số lẻ thì phương trình trên có nghiệm. + Cho tam giác ABC nội tiếp đường tròn (O). Các điểm D, E thuộc đường thẳng BC sao cho AD vuông góc OB và AE vuông góc OC. Gọi M, N lần lượt là trung điểm AC, AB; G là giao điểm của EM và DN; S là giao điểm của OG và BC. Chứng minh rằng: a) Tam giác ACE đồng dạng với tam giác BCA. b) Đường thẳng SA là tiếp tuyến của đường tròn (O). + Trong một giải đấu bóng bàn nam có n (n >= 3) vận động viên tham gia, hai vận động viên bất kỳ thi đấu với nhau đúng 1 trận (không có kết quả hòa). Kết thúc giải đấu, mỗi vận động viên sẽ viết ra tên những đối thủ thua mình và tên những vận động viên thua một trong các đối thủ đó. Một vận động viên được gọi là vô địch tương đối nếu anh ta viết được tên của tất cả n – 1 vận động viên còn lại. Gọi Sn là số vận động viên vô địch tương đối nhiều nhất có thể. a) Tính S3, S4. b) Chứng minh rằng Sn = n với mọi n >= 5.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2017 2018 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2017 2018 sở GD ĐT Quảng Bình Bản PDF Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán lớp 12 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Viết phương trình tiếp tuyến với đồ thị (C): y = x/(x – 1), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi K là trung điểm của SC. Giả sử (P) là mặt phẳng đi qua hai điểm A, K và luôn cắt các cạnh SB, SD lần lượt tại M, N (M, N không trùng S). a. Chứng minh rằng: SB/SM + SD/SN = 3. b. Gọi V1 và V theo thứ tự là thể tích của khối chóp S.AMKN và S.ABCD. Xác định vị trí của mặt phẳng (P) để tỷ số V1/ V đạt giá trị lớn nhất. + Cho a, b, c là các số thực không âm, thỏa mãn a + b + c = 3. Chứng minh rằng: a^2/(b^2 + 1) + b^2/(c^2 + 1) + c^2/(a^2 + 1) ≥ 3/2.
Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2017 2018 sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2017 2018 sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn HSG tỉnh Toán lớp 12 THPT năm 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 12 tại các trường THPT và cở sở GD – ĐT trên toàn tỉnh Hà Tĩnh, đề thi HSG Toán lớp 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 : + Một công ty sữa muốn thiết kế hộp đựng sữa với thể tích hộp là 1dm3, hộp được thiết kế bởi một trong hai mẫu sau với cùng một loại vật liệu: mẫu 1 là hình hộp chữ nhật; mẫu 2 là hình trụ. Biết rằng chi phí làm mặt hình tròn cao hơn 1,2 lần chi phí làm mặt hình chữ nhật với cùng diện tích. Hỏi thiết kế hộp theo mẫu nào sẽ tiết kiệm chi phí hơn? (xem diện tích các phần nối giữa các mặt là không đáng kể). + Cho hàm sốy = (2x + 3)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m. Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để k1 + k2 = 4. [ads] + Cho hình chóp S.ABCD có đáy là hình thoi, AB = AC = a; tam giác SBD đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh SC, mặt phẳng (ABM) chia khối chóp S.ABCD thành hai khối đa diện. a. Tính thể tích của khối đa diện không chứa điểm S. b. Tính khoảng cách giữa hai đường thẳng SA và BM.
Đề thi HSG lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Nội dung Đề thi HSG lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Ninh (Bảng A) Bản PDF Đề thi HSG Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi học sinh giỏi Toán lớp 12 có lời giải chi tiết .
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Nam Định
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Nam Định Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Nam Định gồm 2 phần: 40 câu hỏi trắc nghiệm khách quan, thời gian làm bài 60 phút, 5 bài toán tự luận, thời gian làm bài 75 phút, đề thi nhằm chọn lọc các em HSG môn Toán lớp 12 THPT tại các trường THPT trên toàn tỉnh Nam Định. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm học 2017 – 2018 : + Trong không gian với hệ tọa độ Oxyz, cho A(a,0,0), B(0,b,0), C(0,0,c) với a, b, c là các số thực thay đổi, khác 0 và thỏa mãn a + b + c = 6. Gọi tâm mặt cầu ngoại tiếp tứ diện OABC là I. Giá trị nhỏ nhất của OI bằng? [ads] + Cho X là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một số thuộc X. Xác suất để lấy được một số chia hết cho 45 là? +  Có bao nhiêu giá trị m nguyên dương nhỏ hơn 10 để đồ thị hàm số y = x^3 – mx + m – 1 có hai điểm cực trj nằm về 2 phía của trục Ox?