Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập vận dụng min - max hình học không gian có lời giải chi tiết

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tuyển chọn các bài tập vận dụng min – max hình học không gian có lời giải chi tiết, tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Các bài toán thuộc chủ đề min – max (giá trị lớn nhất – giá trị nhỏ nhất) trong hình học không gian đa phần là các bài toán khó, là câu phân loại học sinh khá giỏi trong các đề thi, đề kiểm tra và gần như không thể thiếu trong các đề thi THPT Quốc gia môn Toán. Thông qua các bài toán được phân tích và giải chi tiết, hy vọng các em sẽ rút ra được những kỹ thuật xử lý khi gặp dạng toán này. Trích dẫn tài liệu bài tập vận dụng min – max hình học không gian có lời giải chi tiết : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = b và vuông góc với mặt phẳng (ABCD). Điểm M thay đổi trên cạnh CD, H là hình chiếu vuông góc của S trên BM. Tìm giá trị lớn nhất của thể tích khối chóp S.ABH theo a, b. [ads] + Gọi x, y, z là chiều dài, chiều rộng và chiều cao của thùng giấy dạng hình hộp chữ nhật không có nắp trên (hình vẽ). S là tổng diện tích xung quanh và đáy còn lại. Trong các thùng có cùng diện tích S, tìm tổng x + y + z theo S của chiếc thùng có thể tích lớn nhất. + Cho tứ diện ABCD có DA = DB = DC = 6 và đôi một vuông góc với nhau. Điểm M thay đổi trong tam giác ABC. Các đường thẳng đi qua M song song DA, DB, DC theo thứ tự cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt tại A1, B1, C1. Tìm thể tích lớn nhất của khối tự diện MA1B1C1 khi M thay đổi.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC phương trình đường thẳng
Tài liệu gồm 34 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình đường thẳng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình đường thẳng: A. LÍ THUYẾT TRỌNG TÂM 1. Phương trình đường thẳng. + Vectơ chỉ phương của đường thẳng. + Phương trình tham số của đường thẳng. + Phương trình chính tắc. 2. Khoảng cách. + Khoảng cách từ điểm đến đường thẳng. + Khoảng cách giữa hai đường thẳng chéo nhau. 3. Vị trí tương đối. + Vị trí tương đối giữa hai đường thẳng. + Vị trí tương đối giữa đường thẳng và mặt phẳng. + Vị trí tương đối giữa đường thẳng và mặt cầu. 4. Góc. + Góc giữa hai đường thẳng. + Góc giữa đường thẳng và mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1: Viết phương trình đường thẳng. Dạng 2: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 3: Góc giữa đường thẳng và mặt phẳng. Dạng 4: Góc giữa hai đường thẳng. Dạng 5: Khoảng cách từ một điểm đến đường thẳng. Dạng 6: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 7: Vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 8: Vị trí tương đối giữa hai đường thẳng. Dạng 9: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 10: Một số bài toán cực trị.
Các dạng bài tập VDC phương trình mặt phẳng
Tài liệu gồm 19 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mặt phẳng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình mặt phẳng: A. LÍ THUYẾT TRỌNG TÂM 1. Phương trình mặt phẳng. 2. Khoảng cách từ một điểm tới mặt phẳng. 3. Vị trí tương đối. 4. Góc giữa hai mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu. Dạng 3: Phương trình mặt phẳng đoạn chắn. Dạng 4: Vị trí tương đối giữa hai mặt phẳng. Dạng 5: Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 6: Khoảng cách từ một điểm đến mặt phẳng. Dạng 7: Góc giữa hai mặt phẳng. Dạng 8: Một số bài toán cực trị.
Các dạng bài tập VDC hệ tọa độ trong không gian
Tài liệu gồm 12 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hệ tọa độ trong không gian, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC hệ tọa độ trong không gian: A. LÍ THUYẾT TRỌNG TÂM 1. Hệ tọa độ trong không gian. 2. Tọa độ của vectơ. 3. Tọa độ của một điểm. 4. Tích có hướng của hai vectơ. 5. Phương trình mặt cầu. B. CÁC DẠNG BÀI TẬP Dạng 1: Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Dạng 2: Tích có hướng. Dạng 3: Ứng dụng của tích có hướng để tính diện tích và thể tích. Dạng 4: Phương trình mặt cầu.
50 bài tập trắc nghiệm sử dụng phương pháp tọa độ giải bài toán hình học không gian
Tài liệu gồm 67 trang, tuyển chọn 50 bài tập trắc nghiệm sử dụng phương pháp tọa độ giải bài toán hình học không gian, có đáp án và lời giải chi tiết; đây là dạng toán vận dụng – vận dụng cao (VD – VDC) thường gặp trong chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và đề thi Trung học Phổ thông Quốc gia môn Toán. Nội dung tài liệu được phân thành 04 dạng toán: 1. Dạng toán 1: Hình chóp có cạnh bên hoặc một mặt vuông góc với đáy. 2. Dạng toán 2: Hình chóp đều và hình chóp dạng khác. 3. Dạng toán 3: Hình lăng trụ tam giác. 4. Dạng toán 4: Hình hộp. [ads] Trích dẫn tài liệu 50 bài tập trắc nghiệm sử dụng phương pháp tọa độ giải bài toán hình học không gian: + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và SA vuông góc với mặt phẳng đáy. Góc giữa mặt bên (SBC) với mặt phẳng đáy bằng 45 độ. Gọi M và N lần lượt là trung điểm của AB và SB. Tính theo a khoảng cách giữa hai đường thẳng MD và CN. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC = 60 độ, BC = 2a. Gọi D là điểm thỏa mãn 3SB = 2SD. Hình chiếu của S trên mặt phẳng (ABC) là điểm H thuộc đoạn BC sao cho BC = 4BH. Tính góc giữa hai đường thẳng AD và SC biết SA tạo với mặt đáy một góc 60 độ. + Hai quả bóng hình cầu có kích thước khác nhau được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của nhà đó. Biết rằng trên bề mặt của hai quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà mà nó tiếp xúc bằng 1; 2; 4. Tổng độ dài đường kính của hai quả bóng đó là? Xem thêm : + Phương pháp tọa độ hóa hình không gian + Phương pháp tọa độ hóa bài toán hình không gian – Trần Duy Thúc