Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề phương trình bậc nhất hai ẩn

Tài liệu gồm 12 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình bậc nhất hai ẩn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm phương trình bậc nhất hai ẩn. – Phương trình bậc nhất hai ẩn x y là phương trình có dạng: ax by c (trong đó abc là các số cho trước a ≠ 0 hoặc b ≠ 0). – Nếu điểm Mx y 0 0 thỏa mãn: 0 0 ax by c thì Mx y 0 0 là 1 nghiệm của phương trình. – Trong mặt phẳng tọa độ Oxy mỗi nghiệm x y 0 0 của phương trình ax by c được biểu diễn bởi 1 điểm có tọa độ (x y 0 0) 0 x: Hoành độ và 0 y: Tung độ. 2. Tập nghiệm của phương trình bậc nhất hai ẩn. – Phương trình: 0 0 ax by c luôn có vô số nghiệm. Tập nghiệm của phương trình được biểu diễn bởi đường thẳng (d ax by c). – Nếu a b 0 0 thì phương trình có nghiệm: c x a y R và đường thẳng song song hoặc trùng với Oy. – Nếu a b 0 0 thì phương trình có nghiệm: x R c y b và đường thẳng song song hoặc trùng với Ox. – Nếu a b 0 0 thì phương trình có nghiệm: x R a c y x b b hoặc y R b c x y a a khi đó đường thẳng d cắt cả hai trục tọa độ. Đường thẳng d là đồ thị hàm số: a c y x b b. B. Bài tập và các dạng toán. Dạng 1 : Xét xem một cặp số có là nghiệm của phương trình bậc nhất hai ẩn hay không? Cách giải: Nếu cặp số thực (x y 0 0) thỏa mãn 0 0 ax by c thì nó được gọi là nghiệm của phương trình ax by c. Dạng 2 : Tìm điều kiện của tham số để đường thẳng ax by c thỏa mãn điều kiện cho trước. Cách giải: – Nếu a b 0 0 thì phương trình có nghiệm: c x a y R và đường thẳng song song hoặc trùng với Oy. – Nếu a b 0 0 thì phương trình có nghiệm: x R c y b và đường thẳng song song hoặc trùng với Ox. Dạng 3 : Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn. Cách giải: Để tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn ax by c ta làm như sau: + Bước 1: Tìm một nghiệm nguyên (x y 0 0) của phương trình. + Bước 2: Đưa phương trình về dạng ax x by y 0 từ đó dễ dàng tìm được các nghiệm nguyên của phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hệ thức lượng trong tam giác vuông
Tài liệu gồm 26 trang, hướng dẫn sử dụng các hệ thức lượng trong tam giác vuông để giải một số dạng bài tập liên quan trong chương trình Hình học 9 chương 1. VẤN ĐỀ 1 . HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. I. Lý thuyết. II. Bài tập. VẤN ĐỀ 2 . TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. I. Lý thuyết. 1. Định nghĩa. 2. Định lí. 3. Một số hệ thức cơ bản. 4. So sánh các tỉ số lượng giác. II. Bài tập. VẤN ĐỀ 3 . MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG. I. Lý thuyết. 1. Định lí. 2. Giải tam giác vuông. II. Bài tập. VẤN ĐỀ 4 . GIẢI BÀI TOÁN HỆ THỨC LƯỢNG BẰNG PHƯƠNG PHÁP ĐẠI SỐ. I. Lý thuyết. II. Bài tập. VẤN ĐỀ 5 . BÀI TẬP VỀ HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG.
Chuyên đề hệ phương trình bậc nhất hai ẩn
Tài liệu gồm 77 trang, hướng dẫn giải các dạng toán chuyên đề hệ phương trình bậc nhất hai ẩn, giúp học sinh học tốt chương trình Đại số 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI I. PHƯƠNG PHÁP THẾ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp thế. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp thế. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4. Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. II. PHƯƠNG PHÁP CỘNG ĐẠI SỐ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp cộng đại số. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. SỬ DỤNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ. C. BÀI TẬP TRẮC NGHIỆM HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI
Chuyên đề hàm số bậc nhất và các bài toán liên quan
Tài liệu gồm 64 trang, tổng hợp kiến thức cần nhớ, phân dạng và hướng dẫn giải các dạng bài tập chuyên đề hàm số bậc nhất và các bài toán liên quan, giúp học sinh học tốt chương trình Đại số 9 chương 2. 1. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ. + Dạng toán 1. Tìm điều kiện xác định của hàm số. + Dạng toán 2. Tính giá trị hàm số khi cho giá trị của ẩn. + Dạng toán 3. Xác định điểm thuộc (không thuộc) đồ thị hàm số. + Dạng toán 4. Sự đồng biến, nghịch biến của hàm số. 2. HÀM SỐ BẬC NHẤT VÀ ĐỒ THỊ HÀM SỐ BẬC NHẤT. + Dạng toán 1. Hàm số bậc nhất. Sự đồng biến và nghịch biến của hàm số bậc nhất. + Dạng toán 2. Đồ thị hàm số y = ax và hệ số góc của đường thẳng y = ax. + Dạng toán 3. Đồ thị hàm số y = ax + b (a khác 0). + Dạng toán 4. Hệ số góc của đường thẳng. Đường thẳng song song và đường thẳng cắt nhau. 3. TỔNG HỢP MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN HÀM SỐ BẬC NHẤT TRONG CÁC ĐỀ TUYỂN SINH VÀO 10 MÔN TOÁN. 4. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng căn bậc hai, căn bậc ba - Nguyễn Tài Chung
Tài liệu gồm 37 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, gồm tóm tắt lý thuyết và bài tập chọn lọc chuyên đề căn bậc hai, căn bậc ba, giúp học sinh học tốt chương trình Toán 9. 1 Căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 2 Căn bậc hai và đẳng thức √A2 = |A|. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 3 Liên hệ giữa phép nhân và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 4 Liên hệ giữa phép chia và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. [ads] 5 Bảng căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. 6 Biến đổi đơn giản biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 7 Rút gọn biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 8 Căn bậc ba. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. Ôn tập chương I. A Đề bài. B Lời giải.