Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên

Tài liệu gồm 17 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. 1. PHÉP CỘNG HAI SỐ TỰ NHIÊN. Dạng 1 . Tính tổng một cách hợp lý. Vận dụng các tính chất giao hoán, kết hợp của phép cộng để tạo thành tổng tròn chục, tròn trăm. Dạng 2 . Tìm x. Coi trong ngoặc là một số hạng, số bị trừ hay số trừ cần tìm, khi đó sử dụng quan hệ phép cộng, phép trừ để đưa về dạng quen thuộc. Sau đó vận dụng quy tắc: * Muốn tìm số hạng chưa biết ta lấy tổng trừ đi số hạng đã biết. * Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ hay Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. * Muốn tìm thừa số chưa biết ta lây tích chia cho thừa số đã biết. Dạng 3 . Bài toán có lời giải. – Bước 1: Đọc kỹ đề toán và tìm hiểu xem ta đã biết được những gì. – Bước 2: Xác định xem bài toán yêu cầu gì. – Bước 3: Tìm cách giải thông qua cái đã biết và cái cần tìm. 2. PHÉP TRỪ HAI SỐ TỰ NHIÊN. Dạng 1 . Thực hiện phép tính. Thực hiện tất cả các phép cộng và trừ theo thứ tự từ trái qua phải. Tính chất phân phối giữa phép nhân đối với phép trừ. Hiệu của hai số không đổi nếu ta thêm vào một số bị trừ và số trừ cùng một số đơn vị. Dạng 2 . Tìm x. Để tìm số chưa biết trong một phép tính, ta cần nắm vững quan hệ giữa các số trong phép tính: Tìm số hạng; Lấy tổng trừ số hạng đã biết. Tìm số bị trừ: Lấy hiệu cộng số trừ. Tìm số trừ: Lấy số bị trừ trừ đi hiệu. Coi trong ngoặc là một số hạng, số bị trừ hay số trừ cần tìm,khi đó sử dụng quan hệ phép cộng, phép trừ để đưa về dạng quen thuộc. Dạng 3 . Bài toán thực tế. Tóm tắt bài toán, xác định đề bài cho yếu tố nào, tính những yếu tố nào? Mối quan hệ giữa các yếu tố với nhau. Dạng 4 . Tính tổng theo quy luật. Để đếm được số hạng 1 dãy số mà 2 số hạng liên tiếp đều nhau 1 số đơn vị ta dùng công thức. Để tính tổng các số hạng của một dãy mà hai số hạng liên tiếp cách đều nhau 1 số đơn vị ta dùng công thức. 3. PHÉP NHÂN HAI SỐ TỰ NHIÊN. Dạng 1 . Tính một cách hợp lý. – Vận dụng các tính chất giao hoán, kết hợp của phép nhân để tạo thành tích tròn chục, tròn trăm. – Vận dụng tính chất phân phối của phép nhân đối với phép cộng để tính tổng một cách hợp lý. Dạng 2 . Tính nhẩm. – Tính nhẩm bằng cách áp dụng tính chất a b c ab ac. – Tính nhẩm bằng cách chia cả hai thừa số với cùng một số thích hợp. – Tính nhẩm bằng cách nhân vào số bị chia và số chia với cùng một số thích hợp. Dạng 3 . Tìm x biết. Vận dụng quy tắc: * Muốn tìm thừa số chưa biết ta lấy tích chia thừa só đã biết. * Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ. * Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. Dạng 4 . Bài toán có lời giải. – Bước 1: Đọc kỹ đề toán và tìm hiểu xem ta đã biết được những gì. – Bước 2: Xác định xem bài toán yêu cầu gì. – Bước 3: Tìm cách giải thông qua cái đã biết và cái cần tìm. 4. PHÉP CHIA HAI SỐ TỰ NHIÊN. Dạng 1 . Thực hiện phép tính. Thực hiện phép tính theo quy tắc nhân chia trước, cộng trừ sau. Đặt phép chia và thử lại kết quả bằng phép nhân. Tích của hai số không đổi nếu ta nhân thừa số này và chia thừa số kia cho cùng một số. Thương của hai số không đổi nếu ta nhân cả số bị chia và số chia cho cùng một số a b c a c b c (trường hợp chia hết). Dạng 2 . Tìm x. Tìm thừa số lấy tích chia thừa số đã biết. Tìm số chia lấy số bị chia chia cho thương. Tìm số bị chia lấy thương nhân số chia. Nếu a b 0 thì a 0 hoặc b 0. Dạng 3 . Bài toán thực tế. Đọc kỹ đề bài, xác định đề bài cho những gì và yêu cầu gì? Áp dụng những kiến thức đã học để giải bài toán. Dạng 4 . Trắc nghiệm.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề cách ghi số tự nhiên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề cách ghi số tự nhiên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT – Trong hệ thập phân, mọi số tự nhiên đều ghi được viết dưới dạng một dãy số lấy trong 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, vị trí của các chữ số trong dãy gọi là hàng. – Cứ 10 đơn vị ở một hàng thì bằng 1 đơn vị của hàng liền trước nó. – Ngoài cách ghi trong hệ thập phân còn cách ghi bằng số La Mã. + Để viết các số La Mã không quá 30 ta dùng ba kí tự sau I V X. Ba chữ số ấy cùng với hai cụm chữ số là IV IX là năm thành phần dùng để ghi số La Mã. Giá trị của mỗi thành phần được ghi trong bảng sau và không thay đổi dù nó đứng ở bất kỳ vị trí nào. Thành phần I V X IV IX Giá trị (viết trong hệ thập phân) 1 5 10 4 9. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm về tập hợp. Một tập hợp gọi tắt là tập bao gồm những đối tượng nhất định. Các đối tượng ấy gọi là các phần tử của tập hợp. 2. Các kí hiệu. – Tập hợp kí hiệu bằng chữ in hoa: A , B , C. – Nếu x là một phần tử của tập hợp A thì ta kí hiệu là: x A. – Nếu y là một phần tử không thuộc tập B thì ta kí hiệu là: y B. 3. Hai cách để mô tả một tập hợp. a) Cách 1. Liệt kê tất cả các phần tử của tập hợp. Viết các phần tử vào trong dấu theo một thứ tự tùy ý nhưng mỗi phần tử chỉ viết 1 lần. VD1: Tập hợp A các số tự nhiên nhỏ hơn 4 là VD2: Tập hợp B các chữ cái trong từ TAP HOP là: B T A P H O. b) Cách 2. Chỉ ra tính chất đặc trưng của các phần tử trong tập. VD3: Tập hợp C các số tự nhiên x nhỏ hơn 6 là C x x là một trong các số tự nhiên đầu tiên. 4. Chú ý. Tập hợp không chứa phần tử nào gọi là tập hợp rỗng và kí hiệu là rỗng. VD: Tập hợp những số tự nhiên bé hơn 0 là tập hợp rỗng. 5. Tập hợp con – Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. – Kí hiệu: A B hay B A, đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A. – Chú ý: Tập rỗng là tập hợp con của mọi tập hợp. Tập hợp A là con của chính tập hợp A. – Ví dụ: Cho ba tập hợp: A M N Tập hợp M là tập hợp con của tập hợp A vì các phần tử của tập hợp M đều thuộc tập hợp A. Tập hợp N không là tập hợp con của tập hợp A vì phần tử 1 của tập hợp N không thuộc tập hợp A. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Chuyên đề tam giác
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Nắm được định nghĩa tam giác. + Hiểu được khái niệm đỉnh, góc, cạnh của tam giác. Kĩ năng: + Biết vẽ tam giác, biết gọi tên các đỉnh, các cạnh, các góc của tam giác. + Nhận biết được điểm nằm bên trong và bên ngoài tam giác. I. LÍ THUYẾT TRỌNG TÂM Tam giác ABC: + Tam giác ABC là hình gồm ba đoạn thẳng AB, BC, CA với ba điểm A, B, C không thẳng hàng. + Tam giác ABC được kí hiệu là ABC hoặc ACB BCA BAC CAB CBA. + Ba điểm A, B, C được gọi là ba đỉnh của tam giác. + Ba đoạn thẳng AB, BC, CA được gọi là ba cạnh của tam giác. + Ba góc CAB ABC BCA được gọi là ba góc của tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết tam giác và các yếu tố của tam giác. Dạng 2 : Vẽ hình. Ta xét hai bài toán cơ bản: Bài toán 1. Vẽ tam giác ABC khi biết độ dài 3 cạnh. + Bước 1. Dựng đoạn BC. + Bước 2. Vẽ cung tròn tâm B bán kính BA. + Bước 3. Vẽ cung tròn tâm C bán kính CA. + Bước 4. Hai cung tròn cắt nhau tại điêm A. Vẽ điểm A. + Bước 5. Nối AB, BC, AC ta được tam giác ABC. Bài toán 2. Vẽ tam giác ABC khi biết số đo góc A và độ dài hai cạnh AB, AC. + Bước 1. Vẽ góc A. + Bước 2. Dựng hai đoạn AB, AC. + Bước 3. Nối BC được tam giác ABC.
Chuyên đề đường tròn
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Nắm vững khái niệm đường tròn, hình tròn. + Nhận biết được dây cung, đường kính, bán kính của đường tròn. + Nhận biết được vị trí của một điểm so với đường tròn. Kĩ năng: + Sử dụng thành thạo compa trong việc vẽ đường tròn, hình tròn. I. LÍ THUYẾT TRỌNG TÂM Đường tròn: Đường tròn tâm O, bán kính R là hình gồm các điểm cách O một khoảng bằng R, kí hiệu (O:R). Hình tròn: Hình tròn là hình gồm các điểm nằm trên đường tròn và các điểm nằm bên trong đường tròn đó. Mọi điểm thuộc đường tròn thì thuộc hình tròn đó. Cung và dây cung: Giả sử A, B là hai điểm nằm trên đường tròn tâm O. Hai điểm này chia đường tròn thành hai phần, mỗi phần gọi là một cung tròn (gọi tắt là cung). Khi đó hai điểm A và B được gọi là hai mút của cung. Đoạn thẳng nối hai mút của cung là dây cung. Dây đi qua tâm là đường kính. Đường kính dài gấp đôi bán kính. II. CÁC DẠNG BÀI TẬP Dạng 1 . Nhận biết vị trí của một điểm với đường tròn. Cho đường tròn tâm O bán kính R. + Điểm M nằm trong đường tròn (O;R) khi và chỉ khi OM < R. + Điểm N nằm trong đường tròn (O;R) khi và chỉ khi ON = R. + Điểm P nằm trong đường tròn (O;R) khi và chỉ khi OP > R. Dạng 2 . Vẽ hình. Dạng 3 . Tính độ dài đoạn thẳng.