Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thường Tín Hà Nội

Nội dung Đề thi Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thường Tín Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic môn Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thường Tín Hà Nội Đề thi Olympic môn Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thường Tín Hà Nội Sytu xin gửi tới quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội. Dưới đây là một số câu hỏi từ đề thi: 1. Một người đi xe đạp từ A đến B đúng giờ dự định. Sau khi đi 10km đầu trong 12 phút, anh ta tính ra rằng nếu tiếp tục đi với vận tốc như vậy thì sẽ đến sớm hơn dự định là 24 phút. Còn nếu giảm vận tốc đi 5km/h thì anh ta vẫn đến B sớm hơn 10 phút so với giờ dự định. Hãy tính khoảng cách AB. 2. Cho phương trình a) Giải phương trình (1) với m = 4 b) Tìm điều kiện của m để phương trình (1) có nghiệm duy nhất là số âm. 3. Cho hình vuông ABCD cạnh a và điểm N trên cạnh AB. Chứng minh rằng: a) CE = CF b) B, D, M thẳng hàng c) EAC đồng dạng với MBC d) Xác định vị trí điểm N trên cạnh AB sao cho tứ giác ACFE có diện tích gấp 3 lần diện tích hình vuông ABCD. Đề thi Olympic lớp 8 môn Toán năm 2022 - 2023 phòng GD&ĐT Thường Tín Hà Nội sẽ là cơ hội để các em thử sức, rèn luyện kỹ năng giải quyết vấn đề và phát triển trí tuệ. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát năng lực Toán 8 năm 2021 - 2022 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát năng lực học sinh môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thái Thụy, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát năng lực Toán 8 năm 2021 – 2022 phòng GD&ĐT Thái Thụy – Thái Bình : + Tìm a, b để đa thức 4 3 A(x) x 5x ax b chia hết cho đa thức 2 B(x) x 5x 8. + Cho tam giác ABC vuông tại A (AB < AC) có AD là phân giác, M và N lần lượt là hình chiếu vuông góc của D trên AB và AC, E là giao điểm của BN và DM, F là giao điểm của CM và DN. 1. Chứng minh tứ giác AMDN là hình vuông và AB.DC = AC.BD 2. Chứng minh EF // BC 3. Gọi H là giao điểm của BN và CM chứng minh ANB đồng dạng với NFA và H là trực tâm của AEF. + Cho x, y > 0 thỏa mãn 32×6 + 4y3 = 1. Tìm giá trị lớn nhất của biểu thức 2 3 2 2 2x y 2021 2022 x y 2022 x y 3033 A.
Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Một ca nô chạy xuôi từ bến A đến bến B hết 2 giờ 30 phút và chạy ngược từ bến B về bến A hết 3 giờ 15 phút. Tính khoảng cách giữa hai bến sông A và B, biết một đám bèo thả trôi trên sông (không bị vật cản) trôi được 600m sau 12 phút. + Cho hai số nguyên m, n thỏa mãn: m2 + n2 – 2(m + n) + 1 = 2mn. Chứng minh rằng tích mn chia hết cho 4. + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB, dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. 1. Chứng minh BN vuông góc với AE và tam giác ONI là tam giác vuông. 2. Gọi K là giao điểm của AC và MN. Chứng minh NC là đường phân giác trong của tam giác NKP và AP.CK = AK.CP. 3. Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Quỳnh Phụ - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Quỳnh Phụ – Thái Bình : + Cho hai đa thức f(x) = (x + 1)(x + 2)(x + 3)(x + 4)(x + 5) + 2014 và g(x) = x2 + 7x + 8. Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức g(x). + Cho hai đa thức: f(x) = x3 – x – 6 và g(x) = x2 + ax + b. Xác định a và b để đa thức f(x) chia hết cho đa thức g(x). Khi đó tìm đa thức thương. + Cho tam giác ABC đều cố định; gọi M là trung điểm của BC. Hai điểm E và F theo thứ tự lần lượt di chuyển trên cạnh AB và cạnh AC sao cho EMF bằng 60° (E khác A và B; F khác A và C). Xác định vị trí điểm E trên cạnh AB sao cho AE + AF lớn nhất.
Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Đông Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đông Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Tư ngày 09 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Đông Sơn – Thanh Hóa : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật b) Biết diện tích tam giác BCH gấp bốn lần diện tich tam giác AEH.Chứng minh rằng AC = 2EF. c) Chứng minh rằng AD AM AN. + Tìm nghiệm tự nhiên của phương trình. + Chứng minh rằng với mọi số nguyên x, y thì A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.