Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 9 tháng 1 năm 2024 hệ thống giáo dục Archimedes School - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 hệ thống giáo dục Archimedes School, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 01 năm 2024. Trích dẫn Đề kiểm tra Toán 9 tháng 1 năm 2024 hệ thống giáo dục Archimedes School – Hà Nội : + Một người dự định đi từ thành phố A đến thành phố B với vận tốc và thời gian đã định. Nếu người đó đi từ A với vận tốc lớn hơn vận tốc dự định 5 km/h thì sẽ đến B sớm hơn dự định 30 phút. Nếu người đó đi từ A với vận tốc nhỏ hơn vận tốc dự định 4 km/h thì sẽ đến B muộn hơn dự định 30 phút. Hỏi vận tốc và thời gian dự định ban đầu của người đó? + Cho parabol (P): y = x2 và đường thẳng d: y = x + 2. a) Vẽ (P) và (d) trên cùng mặt phẳng tọa độ xOy. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. + Cho đường tròn tâm O đường kính AB. Vẽ đường thẳng d là tiếp tuyến với (O) tại A, trên d lấy điểm C sao cho AC < AB. Vẽ cát tuyển CDE tới (O) (CDE nằm giữa CA và CO). Nối BD cắt CO tại M. Gọi H là hình chiếu của A lên CO. 1) Chứng minh: 4 điểm A, D, H, M cùng thuộc một đường tròn. 2) Chứng minh CA2 = CD.CE. 3) Kéo dài tia EO cắt (O) tại K (K khác E). Chứng minh CDH đồng dạng COE và ba điểm A, M, K thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Trần Mai Ninh Thanh Hóa
Nội dung Đề KSCL giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Trần Mai Ninh Thanh Hóa Bản PDF - Nội dung bài viết Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 90 phút, và đề thi đi kèm với lời giải chi tiết. Trích dẫn đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa: Cho biểu thức B. Câu a yêu cầu tìm điều kiện của b để B là biểu thức xác định và rút gọn B. Câu b yêu cầu tìm giá trị của b để B lớn hơn -1. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Câu a yêu cầu tính độ dài của đoạn AH khi AB = 6cm, AC = 8cm. Câu b yêu cầu chứng minh một phương trình liên quan đến các đỉnh và đoạn trong tam giác. Câu c yêu cầu chứng minh một mệnh đề kí hiệu về các đoạn trong tam giác. Rút gọn các biểu thức A và B. Đề thi mang tính thách thức và khuyến khích học sinh rèn luyện kỹ năng giải toán, tư duy logic và phân tích. Hy vọng các em sẽ có kết quả tốt trong kì thi này.