Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Tân Phú - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Tân Phú, thành phố Hồ Chí Minh. Trích dẫn đề kiểm tra học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Tân Phú – TP HCM : + Lớp 9A có 42 học sinh. Vừa qua lớp đã phát động phong trào tặng sách cho các bạn khó khăn ở vùng sâu. Tại buổi phát động, mỗi học sinh trong lớp đều tặng 3 quyển sách hoặc 5 quyển sách. Kết quả cả lớp đã tặng được 146 quyển sách. Hỏi lớp 9A có bao nhiêu bạn tặng 3 quyển sách và bao nhiêu bạn tặng 5 quyển sách? + Một cửa hàng bán loại kem lạnh A như sau: nếu mua không quá 3 hộp thì giá 40 nghìn đồng mỗi hộp, nếu mua nhiều hơn 3 hộp thì bắt đầu từ hộp thứ tư trở đi giá mỗi hộp sẽ giảm đi 20% so với giá ban đầu. a) Viết công thức tính y (số tiền mua kem) theo x (số hộp kem mua được trong trường hợp mua nhiều hơn 3 hộp). b) An và Bình đều mua loại kem lạnh A với số hộp nhiều hơn 3. Biết rằng số hộp kem An mua gấp đôi số hộp Bình mua, đồng thời tổng số tiền mua kem của hai bạn là 624 nghìn đồng, hỏi bạn Bình mua bao nhiêu hộp kem? Giải thích. + Từ một tấm tôn hình chữ nhật, kích thước 50cm x 189cm người ta cuộn tròn lại thành mặt xung quanh của một hình trụ cao 50cm (như hình bên). Hãy tính bán kính r của đường tròn đáy và thể tích của hình trụ (kết quả làm tròn đến hàng đơn vị). Biết diện tích xung quanh hình trụ bằng 27pirh, thể tích hình trụ bằng pir2h (h là chiều cao của hình trụ).

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 9 năm 2018 - 2019 phòng GDĐT Nam Từ Liêm - Hà Nội
Đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Nam Từ Liêm – Hà Nội gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra toàn diện những kiến thức môn Toán mà học sinh khối lớp 9 đã được học trong học kỳ vừa qua, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Cho phương trình: x^2 – 2mx – 4 = 0 (x là ẩn; m là tham số) (1). 1) Chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m. 2) Tìm m để phương trình (1) có 2 nghiệm x1 và x2 thỏa mãn: x1^2 + x2^2 = – 3x1x2. + Cho đường tròn (O;R), dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E), BC cắt đường tròn (O) tại điểm K (K khác B). 1) Chứng minh: Tứ giác AKCE nội tiếp được một đường tròn. 2) Chứng minh: BM2 = BK.BC. 3) Gọi I là giao điểm của AK và MN; D là giao điểm của AC và BI. a) Chứng minh: D thuộc (O;R). b) Chứng minh điểm C cách đều ba cạnh của ∆DEK. 4) Xác định vị trí điểm C trên dây MN để khoảng cách từ E đến tâm đường tròn ngoại tiếp ∆MCK nhỏ nhất.
Đề thi học kỳ 2 Toán 9 năm 2018 - 2019 phòng GDĐT Cầu Giấy - Hà Nội
Nhằm mục đích kiểm tra đánh giá chất lượng dạy và học môn Toán của giáo viên và học sinh lớp 9 trong giai đoạn học kỳ 2 năm học 2018 – 2019, vừa qua, phòng Giáo dục và Đào tạo quận Cầu Giấy – Hà Nội đã tổ chức kỳ thi học kỳ 2 Toán 9 năm học 2018 – 2019. Đề thi học kỳ 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Cầu Giấy – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm 2 trang với 5 bài toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một ô tô đi từ A đến B cách nhau 90 km với vận tốc dự định. Khi từ B trở về A, ô tô đi với vận tốc nhanh hơn vận tốc lúc đi là 5 km/h. Do đó thời gian vế ít hơn thời gian đi là 15 phút. Tính vận tốc dự định của ô tô đi từ A đến B. [ads] + Một hộp sữa hình trụ có đường kính đáy là 12 cm, chiều cao 10 cm. Tính diện tích vật liệu dùng để tạo nên một vỏ hộp như vậy (không tính phần mép nổi). + Cho đường tròn (O;R), từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC với (O) (B, C lần lượt là các tiếp điểm). a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Gọi D là trung điểm của AC, BD cắt đường tròn tại E, đường thẳng AE cắt đường tròn (O) tại điểm thứ hai là F. Chứng minh AB2 = AE.AF. c) Chứng minh BC = CF.
Đề thi HK2 Toán 9 năm 2018 2019 trường THCS Phạm Hồng Thái Hà Nội
Đề thi HK2 Toán 9 năm học 2018 – 2019 trường THCS Phạm Hồng Thái – Hà Nội gồm 1 trang với 5 bài toán dạng tự luận, học sinh làm bài thi học kỳ 2 Toán 9 trong khoảng thời gian 90 phút, kỳ thi nhằm kiểm định chất lượng dạy và học môn Toán 9 của giáo viên và học sinh trong giai đoạn học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 trường THCS Phạm Hồng Thái – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người dự định đi xe gắn máy từ địa điểm A đến địa điểm B cách nhau 90 km. Vì có việc gấp phải đến B trước giờ dự định là 45 phút nên người ấy phải tăng vận tốc lên mỗi giờ 10 km. Hãy tính vận tốc mà người đó dự định đi. [ads] + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Các tiếp tuyến với đường tròn (O) kẻ từ A tiếp xúc với đường tròn (O) tại B và C. Trên cung nhỏ BC lấy điểm M. Từ M kẻ MH vuông góc với BC, MK vuông góc với AC và MI vuông góc với AB. 1) Chứng minh tứ giác MIBH nội tiếp. 2) Chứng minh góc MIH bằng góc MHK. 3) Chứng minh: MH^2 = MI.MK. 4) Tìm vị trí điểm M trên cung nhỏ BC để biểu thức P = MI^2 + MK^2 – 2MH^2. + Tìm tọa độ giao điểm (nếu có) của (d) và (P), với (P): y = x^2 và (d): y = 2x + 3.
Đề thi HK2 Toán 9 năm 2018 - 2019 phòng GDĐT Tư Nghĩa - Quảng Ngãi
Nằm trong kế hoạch kiểm tra chất lượng môn Toán đối với học sinh lớp 9 trong giai đoạn cuối học kỳ 2 năm học 2018 – 2019, vừa qua, phòng Giáo dục và Đào tạo huyện Tư Nghĩa, tỉnh Quảng Ngãi đã tổ chức kỳ thi học kỳ 2 Toán 9 năm học 2018 – 2019. Đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Tư Nghĩa – Quảng Ngãi gồm 5 bài toán dạng tự luận, đề gồm 1 trang, học sinh có 90 phút để hoàn thành bài thi, điểm số của kỳ thi sẽ là cơ sở cho việc đánh giá và xếp loại học lực môn Toán 9. [ads] Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Tư Nghĩa – Quảng Ngãi : + Trên cùng một hệ trục tọa độ Oxy. a) Vẽ đồ thị của hàm số y = x^2 và đồ thị của hàm số y = 3 – x. b) Tìm tọa độ giao điểm của đồ thị hai hàm số trên bằng phép tính. + Cho phương trình: x^2 – (m – 2)x – 2m = 0 (1). a) Chứng tỏ phương trình (1) luôn có nghiệm với mọi m. b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 sao cho x1^2 + x2^2 = 4. + Một tàu thủy chạy trên một khúc sông dài 80 km, cả đi lẫn về mất 8 giờ 20 phút. Tính vận tốc của tàu thủy khi nước yên lặng. Biết vận tốc của dòng nước là 4 km/h.