Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề diện tích xung quanh và thể tích của hình chóp đều

Nội dung Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Bản PDF - Nội dung bài viết Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Chuyên đề này bao gồm 12 trang tài liệu, tập trung vào việc giải quyết các bài toán liên quan đến diện tích xung quanh và thể tích của hình chóp đều. Tài liệu cung cấp một tóm tắt về lý thuyết cơ bản cần nắm vững, các phân dạng toán học và hướng dẫn chi tiết cách giải các dạng bài tập khác nhau. Tài liệu này còn tuyển chọn các bài tập từ dễ đến khó, từ cơ bản đến nâng cao, giúp học sinh có cơ hội ôn luyện và thử thách kỹ năng giải toán của mình. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và hiểu rõ hơn về cách giải quyết vấn đề. Chuyên đề này hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, chương 4 với các nội dung về hình lăng trụ đứng và hình chóp đều. Cụ thể, tài liệu bao gồm: A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC: Công thức tính diện tích và thể tích của hình chóp đều. Công thức tính diện tích và thể tích của hình chóp cụt đều. B. VÍ DỤ MINH HỌA: Phần này cung cấp các ví dụ minh họa để học sinh có thể áp dụng kiến thức lý thuyết vào thực hành. C. PHIẾU BÀI TỰ LUYỆN: Bài tập đại lượng hình học để học sinh tự rèn luyện kỹ năng tính toán. Bài tập chứng minh giúp học sinh phát triển khả năng suy luận và biện minh. Tóm lại, tài liệu này là công cụ hữu ích giúp học sinh nắm vững kiến thức về diện tích xung quanh và thể tích của hình chóp đều, từ đó cải thiện kỹ năng giải toán và chuẩn bị tốt cho các bài kiểm tra và bài thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 45 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Phương trình có hệ số đối xứng. Dạng 2. Phương trình dạng x a x b x c x d k. Dạng 3. Phương trình đưa được về dạng phương trình trùng phương. Dạng 4. Giải phương trình bằng cách đặt ẩn phụ. Dạng 5. Nhẩm nghiệm đưa về phương trình tích. Dạng 6. Phương trình bậc cao. Dạng 7. Phương trình chứa ẩn ở mẫu. Dạng 8. Phương trình chứa dấu giá trị tuyệt đối.
Chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 24 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng tính chất 2 a a k. Dạng 2. Đưa về tổng các số chính phương. Dạng 3. Đưa về phương trình tích. Dạng 4. Đưa về ước số. Dạng 5. Sử dụng bất đẳng thức.
Chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8. 1. Phương pháp đặt nhân tử chung 2. 2. Phương pháp dùng hằng đẳng thức 2. 3. Phương pháp nhóm hạng tử 4. 4. Phối hợp nhiều phương pháp 6. 5. Phương pháp tách hạng tử 11. + Dạng 1. Phân tích đa thức thành nhân tử của đa thức bậc hai 11. + Dạng 2. Phân tích đa thức thành nhân tử của đa thức bậc ba 11. + Dạng 3. Phân tích đa thức thành nhân tử của đa thức bậc bốn 13. + Dạng 4. Phân tích đa thức thành nhân tử của đa thức bậc cao 15. 6. Phương pháp thêm bớt cùng một hạng tử 16. 7. Phương pháp đổi biến số (hay đặt ẩn phụ) 18. + Dạng 1. Đặt biến phụ (x2 + ax + m)(x2 + ax + n) + p 18. + Dạng 2. Đặt biến phụ dạng (x + a)(x + b(x + c)(x + d) + e 19. + Dạng 3. Đặt biến phụ dạng (x + a)4 + (x + b)4 + c 21. + Dạng 4. Đặt biến phụ dạng đẳng cấp 21. + Dạng 5. Đặt biến phụ dạng khác 22. 8. Phương pháp hệ số bất định 25. 9. Phương pháp tìm nghiệm của đa thức 30. 10. Phương pháp xét giá trị riêng 32.
Chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 12 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng định lý Bezout tìm số dư. Dạng 2. Tìm đa thức. Dạng 3. Tổng hợp.